
AUTOMATIC MOOD CLASSIFICATION
USING TF*IDF BASED ON LYRICS

Menno van Zaanen

Tilburg Center for Cognition and Communication

Tilburg University

Tilburg, The Netherlands

mvzaanen@uvt.nl

Pieter Kanters

Tilburg Center for Cognition and Communication

Tilburg University

Tilburg, The Netherlands

pieterkanters@gmail.com

ABSTRACT

This paper presents the outcomes of research into using

lingual parts of music in an automatic mood classification

system. Using a collection of lyrics and corresponding

user-tagged moods, we build classifiers that classify lyrics

of songs into moods. By comparing the performance of

different mood frameworks (or dimensions), we examine

to what extent the linguistic part of music reveals adequate

information for assigning a mood category and which as-

pects of mood can be classified best.

Our results show that word oriented metrics provide a

valuable source of information for automatic mood clas-

sification of music, based on lyrics only. Metrics such as

term frequencies and tf*idf values are used to measure rel-

evance of words to the different mood classes. These met-

rics are incorporated in a machine learning classifier setup.

Different partitions of the mood plane are investigated and

we show that there is no large difference in mood predic-

tion based on the mood division. Predictions on the va-

lence, tension and combinations of aspects lead to similar

performance.

1. INTRODUCTION

With the current boost in music sharing (alongside sharing

files in other formats) [6], Celma and Lamere [4] state that

we see a transformation from albums to individual MP3s

and mixes. This also changes the way people interact with

their music collection and the demands they place on the

software that allows this interaction.

Due to the increasing size of online or digital music col-

lections, users would like to be able to access their collec-

tions through more and more advanced means [13]. For in-

stance, users would like to be able to search for songs based

on various properties, such as year, genre, play count, on-

line recommendation (Web 2.0) or even based on a set

of songs used as seed to find similar ones. One partic-

ular property that people use when creating playlists is

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2010 International Society for Music Information Retrieval.

mood [17]. Currently, this is often done manually by se-

lecting songs that belong to a particular mood and nam-

ing the playlist according to the mood, such as “relaxing”.

Here we investigate the possibility of assigning such infor-

mation automatically, without user interaction.

In recent years, automatic playlist generation has been

introduced to cope with the problem of the tedious and

time consuming manual playlist selection. Furthermore,

browsing the entire music library manually to select songs

for the playlist is felt to be difficult by most music listen-

ers. This becomes especially difficult if music collections

become prohibitively large, as the user will not know or

remember all songs in it.

In fact, it turns out that people have large amounts of

music in their music collection that they never even listen

to. This phenomenon is called The Long Tail [2] as many

songs fall in the region of songs that are hardly ever lis-

tened to, which is visualized as a long tail on the right size

in a histogram. Automatically generating playlists based

on certain properties, such as mood, can expose songs from

the long tail and allow for the user to explore “lost music”

in their music collections.

Here, we will focus on the automatic classification of

music into moods, which is sometimes called “music emo-

tion classification” [18]. Given a music collection contain-

ing songs that do not yet have these moods assigned to

them (or when adding a new, untagged song to the collec-

tion), the process automatically adds the mood tags to the

song, allowing selection of songs based on moods.

We think the melodic part of songs contains important

information that can help the mood classification [10]. How-

ever, we will currently focus on the linguistic aspects of

songs only. The idea is that lyrics contain lexical items

that emphasize a certain mood and as such can be used

to identify the underlying mood. Even though in spoken

language, just like in music, other aspects such as loud-

ness and pitch may also be important triggers to identify

the song’s emotion, we assume here that the actual words

can have an emotional load without being spoken or sung.

For instance, words such as “happy” or “dead” do not have

to be pronounced to have an emotional load. This corre-

sponds to Beukeboom and Semin’s idea [3] that mood af-

fects word choice and that lexical items can express moods.

There has been previous work on the influence of lyrics

on the mood of a song, such as approaches that concen-

75

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

trate on more generic properties present in the lyrics [7],

combining music and lyrics using LSA and vector space

models [12] or using only the musical aspects [9]. Our ap-

proach is quite similar to the work presented in [8], where

multi-label classification is performed, resulting in a differ-

ent classification task. In this paper we concentrate on the

influence of the different divisions of classes on the final

results.

2. APPROACH

In this article, we describe the development of a machine

learning approach to classifying songs, based on lyrics only,

into classes that describe the mood of the song [11]. For

this, we need several components. Firstly, we need to iden-

tify which classes (moods) we are going to classify into.

Secondly, we need to select a collection of features that

allow us to describe properties of the lyrics. Using these

components, we can take a collection of lyrics (describing

songs), extract the features and classify the lyrics into their

mood class. This mood information can be used to auto-

matically create mood-oriented playlists.

2.1 Class divisions

When building a system that can classify songs into moods,

we require a set of classes that describes the allowable

moods. For this, we follow [15] in which two dimensions

are identified: arousal and valence. These dimensions cre-

ate a two-dimensional plane with four areas, dividing the

plane in positive and negative parts on both dimensions.

The moods in this plane range from “angry” and “nervous”

(negative valence, positive arousal) to “happy” and “ex-

cited” (positive valence and arousal) and from “sad” and

“sleepy” (negative valence and arousal) to “relaxed” and

“calm” (positive valence, negative arousal). These words

used here are only used as examples, indicative of the area

in the plane. Other emotionally-laden words can also be

placed in this plane.

To be able to work with a more fine grained set of classes,

we partition the arousal/valence plane into sixteen parts.

This divides both arousal and valence axes into four parts

(two on the positive and two on the negative side of the

axis). The arousal parts are called A–D and the valence

parts 1–4, which leads to individual classes described by a

letter and a number. Based on this division, we investigate

four different class divisions. The first division uses all six-

teen classes. This division is called fine-grained and ranges

from A1–D4. The second, arousal, and third, valence, fo-

cus only on one aspect of the emotional plane. These class

divisions are created by merging four classes. They corre-

spond to only using A–D and 1–4 of the fine-grained divi-

sion, respectively. Finally, we will use the Thayer division,

which clusters all fine-grained classes into four areas based

on the positive/negative areas in Thayer’s arousal/valence

plane.

2.2 Features

We will experiment with a collection of features. These

are divided into two classes: global and word-based. The

global features describe an aspect of the lyric as a whole.

Here, we have experimented with very simple features,

which should be treated as an informed baseline. We con-

sider character count cc (the number of characters in a

lyric), word count wc (the number of words in a lyric) and

line count lc (the number of lines in a lyric).

The word-based features are more complex and use in-

formation of the specific words used and their typical oc-

currence in the lyrics of a particular mood. These features

are heavily influenced by metrics from the field of informa-

tion retrieval [16]. In particular, we use the tf*idf metric

and its components. This is a powerful technique to em-

phasize the importance of a term (word) compared to all

documents in a large document collection [14]. Originally,

tf*idf was devised to search for relevant documents in large

document collections given one or more search terms. The

metric is used to compute relevance of the documents with

respect to the search terms.

In this research, we consider the use of tf*idf to de-

scribe the relative importance of a word for a particular

mood class. In contrast to the typical context, however, we

start with the lyrics of a song instead of search keywords.

The tf*idf value of each word in the lyrics under consider-

ation is used as weights to indicate relevance with respect

to mood classes. This allows us to compute which mood

is most relevant given lyrics, where the mood is described

by the combined lyrics of all songs that have that particular

mood assigned.

The approach sketched indicates that we take the lyrics

of all songs of a particular mood and combine them as if

they are one document. This “document” can be seen as

describing a particular mood. This means that there will

be as many documents as there are moods. Each mood

class corresponds to one document.

The tf*idf metric consists of two components: term fre-

quency (tf) and the inverse document frequency (idf). These

components are multiplied when computing the tf*idf.

The first word-based feature is the term frequency (tf).

This metric measures the importance of word ti in docu-

ment, i.e. mood, dj with ni,j occurrences of the word in

document dj , divided by the sum of the number of occur-

rences of all words in document dj .

tfi,j =
ni,j∑
k nk,j

(1)

In this situation, it measures the number of times a word

occurs with a particular document (or mood). Words oc-

curring more often in the lyrics of a particular mood will

have a higher tf for that mood.

The problem with using term frequency is that most

words that typically occur very often are function words,

such as “the”, “a” or “in”. These words are not likely to

help in classifying lyrics to moods as they do not represent

terms that typically describe a mood. What we are really

interested in are words that occur in only a sub-set (or only

76

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

one) of the moods. The inverse document frequency (idf)

measures the importance of the word with respect to a doc-

ument.

idfi = log
|D|

|{dj : ti ∈ dj}|
(2)

The total number of documents (representing moods)

D is divided by the number of documents in which the

word (ti) appears, and taking the logarithm of that quo-

tient. The idf measures the importance of a word combined

with a specific mood against all moods. In this particular

situation, idf will be high if it occurs in the text of one or

only few moods and will be low when it occurs in multiple

moods (or even zero when it occurs with all moods).

The idf value by itself is not particularly useful as it is

too course-grained (especially when there are only a hand-

ful of moods), but can be multiplied to weigh the tf value,

resulting in the tf*idf.

tf ∗ idfi,j = tfi,j × idfi (3)

The tf*idf is used to calculate the relevance of a word for a

particular mood: high tf*idf values indicate high relevance

of the word to the mood.

The tf*idf provides for one particular word, a score or

weight for each of the classes. Lyrics typically contain

more than one word, which allows for a more robust com-

putation of the relevance of the mood document for the

lyrics under consideration. Practically, we can combine the

tf*idf values of all the words in the lyrics for classification

by adding the values of the separate words.

Taking the lyrics of all songs of a particular mood as one

document results in having between four and sixteen doc-

uments (depending on the mood division). This is signifi-

cantly less than the amount of documents normally under

consideration in a tf*idf setting. In fact, many words will

occur in all moods, which means that in those cases the

idf will be zero which results in a zero tf*idf for all mood

classes for that word. This turns out to be a very useful

aspect of tf*idf weights in small document collections. In

particular, words that do not help in deciding the correct

mood of lyrics, such as function words, are automatically

filtered out, as their tf*idf value will be zero. There is no

way these words can contribute to the final weight of the

lyrics, so there is no need to consider these words when

analyzing the lyrics.

To investigate whether the zero tf*idf scores really are

useful, we also experimented with Laplace smoothing, also

known as “add-one smoothing”, which reduces the amount

of words that have a zero tf*idf. Before computing idf, one

is added to the total number of documents. This means that

the idf will now always be non-zero, albeit very small. In

the case where normally the idf would be zero, the idf will

now be small and the same for all classes, but this allows

the system to use the information from the tf (which is not

possible if idf is zero).

A potential advantage of the smoothed tf*idf is that in

the case of all words having a zero non-smoothed tf*idf

(for example in the case of very short lyrics), which leads

to a zero tf*idf for all classes (and requiring a random

choice for the class), the smoothing lets the system back-

off to using tf. By not multiplying tf with zero (idf), the tf

is retained in the final score, which makes it still possible

to classify using tf.

Another extension that is implemented normalizes over

the length of the lyrics. The tf can be larger if longer lyrics

are used (simply because more words are present in those

lyrics). The normalized tf*idf simply divides the tf*idf val-

ues computed from the lyrics by the length (i.e. number of

words) of the lyrics. This should remove the preference for

higher tf in longer lyrics.

Using tf*idf has several advantages. No linguistically

motivated tools are required and the approach is inherently

language independent. There is no need for the lyrics to be

English (or any other language). The simple occurrence of

the same words in the training data and in the test data will

allow for classification. Obviously, it may be the case that

certain words in one language may also occur in another

language, but we expect that lyrics in different languages

typically use different words. However, more research into

the impact of language dependency needs to be done.

3. RESULTS

To measure the effectiveness (and illustrate the feasibility)

of using tf*idf in classifying songs into moods, we set up a

set of experiments. Taking a collection of songs of which

the mood class is known, we extract the lyrics and apply a

machine learning classifier to these, allowing us to classify

the lyrics into classes based on the different class divisions.

For each of these combinations, we discuss the results.

3.1 Experimental settings

To be able to train a machine learning classifier and to

evaluate our experiments, we require a data set contain-

ing a set of pairs of song (or at least the lyrics) and the

corresponding mood. The data set is provided by Cray-

onroom (http://www.crayonroom.com/), a small

company creating music applications. The data set comes

from their Moody application.

Moody lets users tag songs in iTunes in order to gener-

ate mood-based playlists. The tagging is done by manually

assigning colors to songs where each color corresponds to

a particular mood. The user can choose between 16 moods,

which are presented in a four by four square. The colors

provided are similar to the hue colors of mood [1]. Note

that according to Voong and Beale [17] it is easier for a

user to tag using colors instead of tagging using keywords.

The mood information is stored in the comment field of

the song’s ID3-tag and is exported to Moody’s database.

The information stored in Moody’s database, which con-

tains artist and song title information combined with the

mood tag can also be used to automatically tag new songs.

This application relies on user input to collect the mood

information, but using that information it also helps users

tag more songs in their personal collection. As such, it can

be seen as a Web 2.0 application, which relies on collabo-

rative tagging of songs.

77

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

The mood set used by Moody corresponds well with the

two dimensional mood plane by Thayer [15]. The sixteen

classes, placed in a four by four grid, can be mapped ex-

actly on the plane with four mood tags in each of the areas

in the plane.

Crayonroom provided us with a set of 10,000 random

entries from the Moody database. This is a subset of the

entire database containing mostly popular songs in differ-

ent genres. Most of the songs have an English title, but

there has not been an explicit selection of songs that have

lyrics (as this information is not present in the database it-

self).

The information we received is a list of pairs of artist

and song title, combined with the corresponding mood tag.

Based on this information we started collecting the lyrics

of the songs. Many lyrics can be found online, so we used

the artist and song titles to find the lyrics automatically.

This was done by automatically searching a collection of

lyrics databases given the artist and song information.

Unfortunately, all spaces were removed from the artist

and title fields in the database. This makes automatically

finding lyrics hard. Furthermore, there are situations such

as “AC/DC” which may be spelled in different ways, such

as “ACDC”, “AC-DC”, or “ACDC”.We experimented with

several heuristics to re-introduce spaces and reduce the punc-

tuation problems in the artist and song fields. Applying

these heuristics and trying to find the resulting artists and

song titles led to 5,631 lyrics to be found in the online

databases.

The lyrics were then cleaned up and normalized. All

HTML information was removed, leaving plain text lyrics.

Furthermore, labels such as “chorus”, “repeat until fade

out” and “4x” were removed as they are not properly part

of the lyrics. We realize that this may influence the count

of certain words in the lyrics. However, it is often unclear,

for instance, where the chorus ends exactly. Similarly, it is

often unclear how many repeats are required (in the case

of “repeat until fade out”). Simply removing these labels

will affect the tf, but apart from manually analyzing the

music and correcting all lyrics, we do not see an easy solu-

tion. Manual correction is not a feasible alternative at the

moment.

From the found lyrics we extracted features and com-

bined them together with their mood tag into machine learn-

ing instances. Each instance corresponds to one song. This

information is then used for training and testing (allowing

for evaluation) in a machine learning setting. The differ-

ent class divisions and the distributions of instances can be

found in Table 1 and Table 2.

Each of the experiments is computed using ten fold cross-

validation. This meant that the collection of songs is di-

vided into ten parts and ten experiments are performed,

leaving out one part for evaluation. It is important to re-

alize that for the tf*idf features, the tf*idf values for each

of the words are recomputed for each experiment. This

is needed, because the distribution of words in the train-

ing data may be different for each experiment. Intermedi-

ate tf*idf tables are computed from the training data first,

Fine- Arousal

grained A B C D

1 295 236 248 182 961

2 387 575 564 261 1,787

3 360 650 531 205 1,746

V
al
en
ce

4 253 413 338 133 1,137

1,295 1,874 1,681 781 5,631

Table 1. Distribution of instances: fine-grained (16

classes), Valence and Arousal (both 4 classes).

1 = A3+A4+B3+B4 1,676

2 = A1+A2+B1+B2 1,493

3 = C1+C2+D1+D2 1,255

4 = C3+C4+D3+D4 1,207

Table 2. Distribution of instances: Thayer division (4

classes).

which are then used to compute the actual tf*idf values for

the lyrics to be classified. Similarly, the tf*idf tables will

be different for each of the different class divisions.

Also keep in mind that for the computation of the tf*idf

values, all lyrics belonging to a particular class are com-

bined to serve as one document as described above. When

computing the features for each instance separately, the

tf*idf values that have been computed beforehand (and stored

in a tf*idf table) are used to compute tf*idf scores for each

of the classes.

To classify the test data we used TiMBL, a k-NN classi-

fier [5]. This classifier has been developed at Tilburg Uni-

versity and contains a collection of algorithms with many

parameters to set. In the experiments described here, we

simply used the default parameter setting. This means that

the IB1 algorithm (k nearest distances with k = 1) is used

with the weighted overlap metric and GainRatio weighting.

This means that higher accuracy scores may be reached

when fine-tuning the classifier parameters. In this paper,

we are mostly interested in the feasibility of the approach.

3.2 Experimental results

The results of applying TiMBL to the mood data are sum-

marized in Table 3. The table shows results on the four

different mood divisions and different feature settings.

The baseline shown in the table is the majority class

baseline. This shows that the data is relatively well bal-

anced as can also be seen from Tables 1 and 2. Keep

in mind that the Arousal, Valence, and Thayer divisions

all contain four classes, whereas fine-grained is a 16 class

division. A completely random distribution of instances

would lead to a baseline of 25.00 (four classes) and 6.25

(sixteen classes).

All global features and all of their combinations have

worse performance with respect to the baseline. It turns

out that the information present in these features is simply

not specific enough. For instance, one of the initial ideas

we had before we started this research, that the length of

the lyrics may be different for lyrics in the different classes,

78

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

Arousal Valence Thayer Fine-grained

Baseline 33.28 31.74 29.76 11.54

cc 30.12 (1.77) 29.02 (1.08) 28.15 (1.92) 9.73 (0.67)

wc 31.44 (0.84) 32.59 (1.62) 28.16 (1.65) 11.06 (1.09)

lc 31.81 (1.45) 29.37 (1.69) 27.58 (0.85) 9.85 (0.84)

cc+wc 29.02 (2.26) 28.84 (1.71) 28.47 (2.00) 8.77 (0.90)

cc+lc 29.61 (1.13) 27.77 (1.74) 26.94 (1.74) 8.12 (0.78)

wc+lc 28.92 (1.28) 28.43 (2.05) 27.01 (1.08) 7.74 (0.91)

cc+wc+lc 28.42 (1.69) 27.65 (1.96) 27.03 (1.84) 8.08 (0.84)

tf 33.36 (0.18) 31.77 (0.13) 29.85 (0.15) 11.45 (0.12)

tf*idf 77.18 (1.02) 76.26 (2.03) 75.79 (1.34) 70.89 (1.51)

tf+tf*idf 77.23 (1.02) 76.29 (2.07) 75.85 (1.37) 70.89 (1.50)

Table 3. Mean accuracy and standard deviation of different feature settings and class divisions.

is not true. This is also reflected in the other features used.

To allow for classification into moods, more specific infor-

mation is required.

All advanced features based on tf*idf (apart from tf by

itself) significantly outperform the baseline. The tf by it-

self does not help to classify songs into the correct mood

class. The reason for this is that the words that occur most

frequently (typically function words, such as “the”) greatly

outnumber the content words. Even when function words

occur approximately the same for each class, minor vari-

ations still have a large impact with respect to otherwise

more useful content words, which normally do not occur

very often. For classification purposes, we are mostly in-

terested in words that help identifying the mood of the

lyrics. Words that occur in the lyrics of all moods have

limited usefulness. Unfortunately, because function words

occur most frequent, they have a large impact on the tf.

When adding idf, which happens with the tf*idf fea-

tures, the accuracy goes up dramatically. Adding idf re-

moves (or reduces) all weights for words that occur in lyrics

of all or several classes. This means that only words that

do not occur in lyrics of all moods remain or have a higher

impact. This metric seems to coincide with the notion of

usefulness that we are trying to implement.

The words with the highest tf*idf score for a particular

class are not what we expected. These are words that occur

very frequently in only one song. Examples of words with

high idf and tf are: “aaah”, “dah”, or “yoy”. However,

these words are not often used in classification either.

The results of the experiments using a combination of

the tf*idf metric and the tf metric is slightly better than

simply using the tf*idf metric only. We expect that this has

to do with the situation where there are none or not many

words with a non-zero tf*idf in the lyrics. This may oc-

cur, for instance, when a song contains non-English lyrics.

In that case, the tf*idf values are too often zero, but the

tf features allow for a back-off strategy. The differences,

however, are minor and non-significant.

As mentioned earlier, we have also implemented a nor-

malized (dividing by the number of words in all the lyrics

of a particular mood) and a Laplace smoothed version of

the metrics. Since the normalization and smoothing can

also be applied together, this leads to three more versions

of all the tf and tf*idf experiments described so far. The

results of these experiments are not shown in Table 3 as

these experiments yield exactly the same mean accuracy

and standard deviation as the normal tf and tf*idf features.

Obviously, the tf and tf*idf values for each of the words

are different in each case, but the classification is the same.

We think that length normalization does not help in clas-

sification because the length of the lyrics in each class is

too similar. This means that all tf*idf values are divided

by a (near) constant. Effectively, similar figures are then

used to classify. Furthermore, Laplace smoothing does not

help because most of the time the lyrics contain enough

non-zero idf words to allow for correct classification. Ad-

ditionally, when smoothing, words occurring in all classes

are used as well, but since they occur in all classes, they do

not have a large impact in deciding the correct class.

The different class divisions (arousal, valence, Thayer,

and fine-grained) were devised to show which aspect of

emotion is easiest to classify. The results show that at least

using the technique described here, there is no clear differ-

ence. We originally thought that valence would be easier

to classify. Positive or negative moods can easily be de-

scribed using words such as “happy” and “sad”. However,

the intensity (described by arousal) can just as easily be

classified. Most interesting is the fact that the fine-grained

class division can be classified effectively as well. Re-

member that the fine-grained division has sixteen classes

whereas the other divisions only have four.

4. CONCLUSION AND FUTURE WORK

This paper describes an attempt to design, implement and

evaluate a mood-based classification system for music based

on lyrics. The ultimate aim is the automatic assignment

of mood-based tags for songs in a users’ music database,

based on lyrics only. By automatically assigning mood

tags to songs, users do not have to assign mood properties

to all songs in a potentially large music collection man-

ually. Having access to the mood information ultimately

allows for the easy creation of playlists based on moods.

To measure the usefulness of words in lyrics with re-

spect to the mood classes, we used a standard information

retrieval metric: tf*idf. This metric is normally used to

79

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

measure relevance of terms with respect to documents in

a large document collection, but when the same metric is

used in a very small set of documents, it shows some inter-

esting and useful properties. The main property used here

is that in very small document collections, the tf*idf filters

out words occurring in all documents. These are words

that are not useful for finding out which document (mood

in our case) fits best.

The results show that the tf*idf feature improves the re-

sults significantly with respect to the majority class base-

line. This shows that tf*idf can be used effectively to iden-

tify words that typically describe mood aspects of lyrics.

This outcome shows that the lingual part of music reveals

useful information on mood.

One has to keep in mind that the experiments reported

here only take the linguistic aspects of songs into account.

In order to improve results further, other characteristics,

such as tempo, timbre or key, should be taken into con-

sideration as well. However, using these aspects requires

access to the music (in addition to the lyrics).

The evaluation of the current system is against the mood

tags provided by Moody. These tags are based on human

annotation. However, it may be that different people assign

(slightly) different tags to the songs. We do not know ex-

actly how this is handled in the Moody application, but this

may have an impact on the evaluation of the system. Also,

we do not know what the inter-annotator agreement is. In

future research we need to consider this potential spread of

human annotation, for example by taking the confidence of

the system for the different moods into account.

A related problem is that the boundaries between the

different moods is not clear-cut. A possible solution to this

problem and that of the possible variation of annotation

is to evaluate using a metric that takes distances between

moods in to account. For instance, classifying A2 instead

of A1 is better than classifying D4.

5. REFERENCES

[1] A. Albert. Color hue and mood: The effect of varia-

tion of red hues on positive and negative mood states.

Journal of the Behavioral Sciences, 1, 2007.

[2] Chris Anderson. The long tail. Wired, 12.10, October

2004.

[3] C.J. Beukeboom and G.R. Semin. How mood turns on

language. Journal of experimental social psychology,

42(5):553–566, 2005.

[4] O. Celma and P. Lamere. Tutorial on music recommen-

dation. Eight International Conference on Music Infor-

mation Retrieval: ISMIR 2007; Vienna, Austria, 2007.

[5] Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and

Antal van den Bosch. TiMBL: Tilburg memory-based

learner. Technical Report ILK 02-10, Tilburg Univer-

sity, Tilburg, the Netherlands, November 2002.

[6] B. Haring. Beyond the Charts: Mp3 and the Digital

Music Revolution. JM Northern Media LLC, 2000.

[7] Hui He, Jianming Jin, Yuhong Xiong, Bo Chen,

Wu Sun, and Ling Zhao. Language feature mining for

music emotion classification via supervised learning

from lyrics. In Proceedings of the Third International

Symposium, ISICA 2008; Wuhan, China, volume 5370

of Lecture Notes in Computer Science, pages 426–

435, Berlin Heidelberg, Germany, December 2008.

Springer-Verlag.

[8] Xiao Hu, J. Stephen Downie, and Andreas F. Ehman.

Lyric text mining in music mood classification. In Pro-

ceedings of the tenth International Society for Mu-

sic Information Retrieval Conference (ISMIR); Kobe,

Japan, pages 411–416, October 2009.

[9] Xiao Hu, J. Stephen Downie, Cyril Laurier, Mert Bay,

and Andreas F. Ehrmann. The 2007 mirex audio mood

classification task: Lessons learned. In Proceedings

of the 9th International Conference on Music Infor-

mation Retrieval (ISMIR08), Philadelphia:PA, USA,

pages 462–467, 2008.

[10] Patrik N. Juslin and Petri Laukka. Expression, percep-

tion, and induction of musical emotions: A review and

a questionnaire study of everyday listening. Journal of

New Music Research, 33(3):217–238, September 2004.

[11] Pieter Kanters. Automatic mood classification for mu-

sic. Master’s thesis, Tilburg University, Tilburg, the

Netherlands, June 2009.

[12] C. Laurier, J. Grivolla, and P. Herrera. Multimodal

music mood classification using audio and lyrics. In

Proceedings of the International Conference on Ma-

chine Learning and Applications (ICMLA08); San

Diego:CA, USA, pages 688–693, Los Alamitos:CA,

USA, 2008. IEEE Computer Society Press.

[13] O.C. Meyers. A mood-based music classification and

exploration system. Master’s thesis, Massachusetts In-

stitute of Technology, Cambridge:MA, USA, 2007.

[14] J. Ramos. Using tf-idf to determine word relevance in

document queries. In First International Conference on

Machine Learning, New Brunswick:NJ, USA, 2003.

Rutgers University.

[15] R.E. Thayer. The Biopsychology of Mood and Arousal.

Oxford University Press, New York:NY, USA, 1982.

[16] C. J. van Rijsbergen. Information Retrieval. University

of Glasgow, Glasgow, UK, 2nd edition, 1979. Printout.

[17] Michael Voong and Russell Beale. Music organisation

using colour synaesthesia. In CHI ’07: CHI ’07 ex-

tended abstracts on Human factors in computing sys-

tems, pages 1869–1874, New York:NY, USA, 2007.

ACM Press.

[18] Y. Yang, C. Liu, and H. Chen. Music emotion classifi-

cation: A fuzzy approach. In Proceedings of the 14th

annual ACM international conference on Multimedia;

Santa Barbara:CA, USA, pages 81–84, New York:NY,

USA, 2007. ACM Press.

80

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

