
Figure 1. n-occurrences of using method G1 alone (x-
axis) vs. n-occurrences using a moderate combination of
G1 and FP (y-axis, wG1 = 0:6 and wF P = 0:4) for music
portal data. The diagonal line indicates songs for which
the n-occurence does not change.

genre “Electronic” (see Table 2) is 29:11%. Always guess-
ing the two most probable genres “Electronic” and “Rock”
yields 36:46%.

In Figure 1 we have plotted the n-occurrences of using
method G1 alone (i.e. wG1 = 1:0 and wF P = 0:0) ver-
sus the n-occurrences of the moderate combination using
weights wG1 = 0:6 and wF P = 0:4. This is done for all
songs in the music portal data base. The n-occurrence of
every song beneath the diagonal line is reduced by using
the combination. All large hubs with an n-occurrence big-
ger than 300 are clearly reduced. The same is true for the
majority of hubs with n-occurrences between 200 and 300.

5. CONCLUSION

We were able to show that the so-called hub problem in au-
dio based music similarity indeed does exist in very large
data bases and therefore is not an artefact of using lim-
ited amounts of data. As a matter of fact, the relative
amount and size of hubs is even growing with the size of
the data base. On the same very large web shop data base
we were able to show that a non-timbre based parameteri-
zation of audio similarity (fluctuation patterns) is by far not
as prone to hubness as the standard approach of using Mel
Frequency Cepstrum Coefficients (MFCCs) plus Gaussian
modeling. Extending recent successful work on combin-
ing different features to compute overall audio similarity,
we were able to show that this not only maintains a high
quality of audio similarity but also decisively reduces the
hub problem.

The combination result has so far only been shown on
the smaller music portal data base, but there is no reason
why this should not hold for the larger web shop data. Only
limitations in computer run time led us to first evaluate the
combination approach on the smaller data set. We are not
claiming that our specific combination of features is the
best general route towards audio similarity. But we are
convinced that going beyond pure timbre-based similarity

is able to achieve two goals simultaneously: high quality
audio similarity and avoiding the hub problem.
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