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ABSTRACT

This paper considers a particle filter based algorithm to ex-
tract melody from a polyphonic audio in the short-time
Fourier transforms (STFT) domain. The extraction is fo-
cused on overcoming the difficulties due to harmonic / per-
cussive sound interferences, possibility of octave mismatch,
and dynamic variation in melody. The main idea of the al-
gorithm is to consider probabilistic relations between melody
and polyphonic audio. Melody is assumed to follow a
Markov process, and the framed segments of polyphonic
audio are assumed to be conditionally independent given
the parameters that represent the melody. The melody pa-
rameters are estimated using sequential importance sam-
pling (SIS) which is a conventional particle filter method.
In this paper, the likelihood and state transition are defined
to overcome the aforementioned difficulties. The SIS algo-
rithm relies on sequential importance density, and this den-
sity is designed using multiple pitches which are estimated
by a simple multi-pitch extraction algorithm. Experimen-
tal results show that the considered algorithm outperforms
other famous melody extraction algorithms in terms of the
raw pitch accuracy (RPA) and the raw chroma accuracy
(RCA).

1. INTRODUCTION

Many people believe that people recognize music as a se-
quence of monophonic notes called melody, and for this
reason, melody extraction is playing an important role in
music content processing which has recently become an
important research area. Although the debate over the def-
inition of melody is on going [1–3], many experts concur
that melody should be the dominant pitch sequence of a
polyphonic audio. In this paper, melody is defined to be
the singing voice pitch sequence in the vocal part and the
pitch sequence of the solo instrument in non-vocal part or
non-vocal music. When a music contains singing voice,
most people recognize music by the vocal melody line in
the vocal part. However, in non-vocal part such as inter-
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mezzo and non-vocal music such as jazz and orchestra,
most people recognize music by the melody line of the solo
instrument.

Many melody extraction algorithms have been proposed
over the last one decade [1–6], albeit with limited success.
Melody extraction from the polyphonic audio is still diffi-
cult for the following reasons:

1. Harmonic interference: Harmonics of other instru-
ment signal interfere in the estimation of the melody
pitch harmonics.

2. Percussive sound interference: Percussive sound in-
terfere to estimate the melody pitch because the en-
ergy of it forms a vertical ridge with strong and wide-
band spectral envelopes.

3. Octave mismatch: The estimated pitch can be one
octave higher or lower than the ground-truth.

4. Dynamic variation in melody: Accurate pitch esti-
mation in the beginning, end and sudden transient
regions of a melody is difficult.

In this paper, melody pitch frequency and harmonic am-
plitudes that represent the melody are estimated in the short-
time Fourier transforms (STFT) domain. The main idea
of the algorithm is to consider a probabilistic relations be-
tween melody and polyphonic audio. Melody pitch fre-
quency and harmonic amplitudes are assumed to follow
Markov processes, and the framed segments of polyphonic
audio are assumed to be conditionally independent given
melody pitch frequency and harmonic amplitudes. Thus,
melody pitch frequency and harmonic amplitudes can be
estimated from the polyphonic audio based on the Bayesian
sequential model once the likelihood and state transition
are defined. The likelihood is defined to be robust to har-
monic and percussive sound interferences. The state tran-
sition of melody pitch frequency is adjusted by control pa-
rameters that discourages octave mismatch and dynamic
variation in the melody. The sequential importance sam-
pling (SIS) algorithm, a conventional particle filter algo-
rithm, is used to estimate the melody parameters. The
SIS algorithm relies on a so-called sequential importance
density, and this density is designed using multiple pitches
which are estimated by a simple multi-pitch extraction al-
gorithm.
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This paper is organized as follows. Section 2 presents
the melody extraction from polyphonic audio based on par-
ticle filter. Section 3 provides experimental results. Fi-
nally, Section 4 concludes this paper.

2. MELODY EXTRACTION FROM POLYPHONIC
AUDIO BASED ON PARTICLE FILTER

2.1 Melody extraction from polyphonic audio

The melody pitch harmonics xt[n] in the tth frame is de-
fined as follows:

xt[n] = w[n]
H∑

m=1

Am,t cos(mω0,tn + ϕm,t), (1)

where Am,t, ω0,t, ϕm,t, H and w[n] are the amplitude of
the mth harmonic in the tth frame, the melody pitch fre-
quency in the tth frame, the phase of the mth harmonic in
the tth frame, number of melody pitch harmonics, and the
analysis window function, respectively. The polyphonic
audio can be expressed as

zt[n] = xt[n] + yt[n], (2)

where zt[n] and yt[n] are the polyphonic audio signal and
signal of other instruments in the tth frame, respectively.
In the frequency domain, the following relationship holds:

zt = xt + yt, (3)

where zt, xt, and yt are the N -point discrete Fourier trans-
forms (DFT) of zt[n], xt[n], and yt[n], respectively.

The parameters of the melody pitch harmonics – the
melody pitch frequency and the harmonic amplitudes –
must be estimated for the melody extraction. This paper
assumes that the phase of the melody pitch harmonics is
the same as the phase of the polyphonic audio, i.e., the
phase of the melody pitch is not estimated since human ear
is assumed to be unsensitive to phase variations. Thus, the
tth frame parameter set is defined as

Θt = (ω0,t,At), (4)

where At = [A1,t, A2,t, ..., AH,t]. The objective of melody
extraction is to estimate Θt from given zt. It is usually
observed that successive parameters – ω0,t and At – are
highly correlated. In this paper, it is assumed that Θt is
considered a Markov process and yt at each frame is con-
ditionally independent given Θt. Here, Θt is considered
latent while yt is observed. From this perspective, the
Bayesian sequential model for melody extraction can be
constructed as shown in Figure 1. In Figure 1, p(zt|Θt),
p(Θt|Θt−1), and ρt are likelihood, state transition, and
control parameter to decide the state transition of the melody
pitch frequency, respectively. From this Bayesian sequen-
tial model, the posterior probability p(Θ0:t|z1:t) 1 is es-
timated, and it is used to estimate Θt for melody extrac-
tion. To estimate p(Θ0:t|z1:t), likelihood and state evolu-
tion equations with state transition needs to be defined.

1 The notation a0:t means that a0:t = [a0, a1, ..., at]T

Figure 1. Bayesian sequential model for melody extrac-
tion. zt, Θt, and ρt are polyphonic audio, melody param-
eter (ω0,t and At), and control parameter, respectively.

To obtain the likelihood, it is assumed that the DFT co-
efficients of yt follow a zero mean complex multivariate
Gaussian distribution, which is given by

yt ∼ N (0, Σt), Σt = diag(σ2
t,1, σ

2
t,2, ..., σ

2
t,N ), (5)

where Σt and σt,k are the covariance matrix in tth frame
and the variance of the kth bin in the tth frame, respec-
tively. Eqn. (5) yields the likelihood as follows:

p(zt|Θt) = N (zt;xt,Σt)
∝ exp

{
−(zt − xt)HΣ−1

t (zt − xt)
}

, (6)

where (·)H is the Hermitian operator. To define p(zt|Θt),
σt,k must be estimated. In this paper, σt,k is estimated
using the decision-directed method [7] as follows:

σ̂t,k = ασ̂t−1,k + (1 − α)|Yt,k|2, (7)

where α and Yt,k are a smoothing factor and the kth bin
DFT coefficient of yt, respectively. However, Eqn. (7) can
not be used directly since Yt,k is unknown. It is assumed
that Yt,k is highly correlated with Yt−1,k. Therefore, the
estimation is modified as follows:

σ̂t,k = ασ̂t−2,k + (1 − α)|Ŷt−1,k|2. (8)

Accurate estimation of Σt will lead to robustness to har-
monic and percussive sound interferences. Figure 2 shows
an example of zt and an estimate of Σt, and it is easily
shown that the likelihood in Eqn. (6) is maximized at the
true Θt.

The state evolution equations, which describe relation-
ships of the parameters at frame t, are set as follows:

Am,t = Am,t−1 + vA,t−1, (9)

ω0,t = ω0,t−1 + vω0,t−1, (10)

where vA,t−1 and vω0,t−1 are the random perturbations
corresponding to harmonic amplitudes and melody pitch
frequency of the (t−1)th frame, respectively. This type of
state evolution equations is called random walk: the cur-
rent state is a random perturbation of the previous state.
It is important to define p(vA,t−1) and p(vω0,t−1) accu-
rately, and in this paper, p(vA,t−1) is assumed to be a trun-
cated Gaussian as shown in Figure 3 since Am,t > 0, and
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Figure 2. Example of polyphonic audio (zt) and the esti-
mated variances (Σt) of other instrument signal.

p(vω0,t−1) is assumed to be a Gaussian whose variance
controlled by ρt. Melody line is characterized by pro-
longed periods of smoothness, with infrequent sharp changes
in note transition or during vibrato regions.

Furthermore, there are two general rules concerning the
melody line: 1) the vibrato exhibits an extent of 60∼200
cents 2 for singing voice and only 20∼30 cents for other
[8], and 2) the transitions are typically limited to one oc-
tave [1]. Therefore, assumption that vω0,t−1 follows a Gaus-
sian distribution with fixed variance is not appropriate. In
this paper, the state transition from the from the (t − 1)th
state to the tth state of the melody pitch frequency is con-
trolled by ρt which indicates the degree of the melody line
being whether in transition or not. Here, transition includes
vibrato. And, ρt is defined as

ρt = ω̂0,t−1 − ω̂0,t−2, (11)

and p(vω0,t−1) is given by

p(vω0,t−1) =


N (0, 20 cent) ρt < 50 cent
N (0, 50 cent) 50 cent ≤ ρt < 100 cent
N (0, 100 cent) 100 cent ≤ ρt

.

(12)
When ρt is small, the current melody pitch frequency rep-
resents a certain note frequency and has a value similar to
the previous melody pitch frequency. When ρt is large, the
current melody pitch frequency is with high probability in
a note transition or vibrato regions and has a value dis-
similar to the previous melody pitch frequency. The state
transition of melody pitch frequency defined by Eqn. (12)
can lead to robustness to octave mismatch and dynamic
variation in melody.

2 The cent is a unit of logarithmic frequency range, and it is defined as

fcent = 6900 + 1200 log2

fHz
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Figure 3. State transition in harmonic amplitudes.

2.2 Melody extraction based on particle filter

In this paper, p(Θ0:t|z1:t) is approximated using Monte
Carlo integration and Θt is estimated using the particle
filter. The SIS algorithm which is a common particle fil-
ter method [9, 10] is adopted to estimate the parameters
of the melody. If the likelihood and the state transition
follow a Gaussian distribution, the problem can be solved
by Kalman filter. However, the state transition is not as-
sumed to be a Gaussian. The SIS algorithm is used to ob-
tain p(Θ0:t|z1:t) based on the Bayesian sequential model
shown as Figure 1.

The posterior density p(Θ0:t|z1:t) can be approximated
as follows:

p(Θ0:t|z1:t) ≈
Np∑
i=1

w
(i)
t δ(Θ0:t − Θ(i)

0:t), (13)

where Θ(i)
0:t, wt(i), and Np are the ith particle of Θ0:t, as-

sociated weight, and the number of particles, respectively.
The weights are normalized such that

∑Np

i=1 w
(i)
t = 1. The

weights are chosen using the method of importance sam-
pling. If the particle Θ(i)

0:t were drawn from an importance
density q(Θ(i)

0:t|z1:t), the weights in Eqn. (13) are defined
as follows:

w
(i)
t ∝ p(Θ(i)

0:t|z1:t)

q(Θ(i)
0:t|z1:t)

. (14)

If the importance density is chosen to factorize as follows

q(Θ0:t|z1:t) = q(Θt|Θ0:t−1, z1:t)q(Θ0:t−1|z1:t−1),
(15)

then one can obtain particles Θ(i)
0:t ∼ q(Θ(i)

0:t|z1:t) by aug-
menting each of the existing particles Θ(i)

0:t−1 ∼ q(Θ(i)
0:t−1|

z1:t−1) with the new state Θ(i)
t ∼ q(Θt|Θ0:t−1, z1:t). The

weight update equation can be derived as follows using
Eqn. (14) and Eqn. (15)

w
(i)
t ∝ w

(i)
t−1

p(zt|Θ(i)
t )p(Θ(i)

t |Θ(i)
t−1)

q(Θ(i)
t |Θ(i)

t−1, zt)
. (16)

A common problem with the particle filter is the de-
generacy phenomenon, where after a few iterations, most
particles have negligible weight [9,10]. A suitable measure
of degeneracy is the effective particle size, Neff , which is
given by

N̂eff =
1∑Np

i=1(w
(i)
t )2

. (17)

359

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



4000 4500 5000 5500 6000 6500 7000 7500 8000 8500
0

1

2

3

4

5

6

7

x 10
−3

pitch candidate [cent]

 

 

importance density

N−best

previous particle

Figure 4. Design of q(ω(i)
0,t|ω

(i)
0,t−1, zt).

In this paper, to avoid the degeneracy problem, resampling
algorithm is used when Neff ≤ Np

2 .
Finally, estimation of parameters is achieved by poste-

rior mean after obtaining p(Θ0:t|z1:t).

ω̂0,0:t =
Np∑
i=1

w
(i)
t ω

(i)
0,0:t, (18)

Â0:t =
Np∑
i=1

w
(i)
t A(i)

0:t. (19)

2.2.1 Design of sequential importance density

The performance of the SIS algorithm depends on the choice
of q(Θ(i)

t |Θ(i)
t−1, zt). Setting q(Θ(i)

t |Θ(i)
t−1, zt) = p(Θ(i)

t |Θ(i)
t−1)

leads to not only unnecessary large number of particles
but also difficulties in estimating p(Θ0:t|z1:t). In this pa-
per, a multiple pitch estimation algorithm is used to define
q(Θ(i)

t |Θ(i)
t−1, zt) since the melody pitch frequency is as-

sumed to be one of the pitch estimate given by the multiple
pitch estimates. A main idea in defining q(Θ(i)

t |Θ(i)
t−1, zt)

is to generate particles of the melody parameters similar to
the estimated multiple pitch parameters. To obtain multiple
pitch parameters, the multiple pitch estimation algorithm
proposed in [11] is used.

Before drawing particles from the importance density,
q(Θ(i)

t |Θ(i)
t−1, zt) is factorized as follows:

q(ω(i)
0,t,A

(i)
t |ω(i)

0,t−1,A
(i)
t−1, zt)

= q(A(i)
t |ω(i)

0,t,A
(i)
t−1, zt)q(ω

(i)
0,t|ω

(i)
0,t−1, zt). (20)

Here, ω0,t and At are considered conditionally indepen-
dent given ω

(i)
0,t−1,A

(i)
t−1, and zt. First, melody pitch parti-

cles are drawn as given by

ω
(i)
0,t ∼ q(ω(i)

0,t|ω
(i)
0,t−1, zt), (21)

where q(ω(i)
0,t|ω

(i)
0,t−1, zt) is shown as Figure 4. In defin-

ing q(ω(i)
0,t|ω

(i)
0,t−1, zt), the current melody pitch particles

are drawn near the N -best pitch candidates obtained from

the multiple-pitch estimation and the melody pitch parti-
cles drawn in the previous frame. After drawing melody
pitch particles, melody pitch harmonic amplitudes parti-
cles are drawn as given by

A(i)
t ∼ q(A(i)

t |ω(i)
0,t,A

(i)
t−1, zt)

= N

A(i)
t−1 + Az

ω
(i)
0,t

t

2
,
|A(i)

t−1 − Az
ω
(i)
0,t

t |
2

 (22)

where Az
ω
(i)
0,t

t is the harmonic amplitudes corresponding
pitch candidate near ω

(i)
0,t with constraint A(i)

t > 0. In

defining q(A(i)
t |ω(i)

0,t,A
(i)
t−1, zt), the current harmonic am-

plitude particles which are similar to the previous harmonic
amplitude particles and harmonic amplitudes of the N -

best pitch candidates are generated. If A(i)
t−1 and Az

ω
(i)
0,t

t

are similar, then
|A(i)

t−1−Az
ω
(i)
0,t

t |
2 ≈ 0, therefore, A(i)

t ≈

A
(i)
t−1+Az

ω
(i)
0,t

t

2 . If A(i)
t−1 and Az

ω
(i)
0,t

t are not similar, then

|A(i)
t−1−Az

ω
(i)
0,t

t |
2 >> 0, therefore, A(i)

t is generated some-
what randomly.

The outline of the considered algorithm is given below.

Outline of the considered algorithm
Melody extraction based on the SIS
For i = 1, ..., Np

1. Generate the particles

• Melody pitch particles
ω

(i)
0,t ∼ q(ω(i)

0,t|ω
(i)
0,t−1, zt)

• Harmonic amplitudes particles
A(i)

t ∼ q(A(i)
t |ω(i)

0,t,A
(i)
t−1, zt)

2. Update the weights: Eqn. (16)

Normalize the weights (
∑Np

i=1 w
(i)
t = 1).

Resampling: Resampling algorithm is used
when Neff ≤ Np

2 .
Estimation: Melody pitch frequency in tth
frame is estimated by Eqn. (18). Harmonic am-
plitudes of melody pitch harmonics in tth frame
are estimated by Eqn. (19).

3. EVALUATION

The considered algorithm was evaluated and compared to
other melody extraction algorithms using the ISMIR 2004
Audio Description Contest (ADC04) database. The database
contains 20 polyphonic musical audio pieces. All test data
are single channel PCM data with 44.1 kHz sample rate
and 16-bit quantization. Table 1 shows the data composi-
tion of the ADC04 set. Search range of melody pitch fre-
quency was between 80Hz and 1280Hz in frequency do-
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Melody Instrument Sytle
Synthesized voice (4) POP
Saxophone (4) Jazz
MIDI instruments (4) Folk(2), Pop(2)
Human voice (2 male, 2 female) Classical opera
Male Voice (4) POP

Table 1. Summary of ADC04 data set. The number in
parentheses is the number of corresponding pieces.

RPA RCA
Goto [2] 65.8% (2005) 71.8% (2005)

Paiva el al. [3] 62.7% (2005) 66.7% (2005)
Marlot [4] 60.1% (2005) 67.1% (2005)

Ryynanen el al. [5] 68.6% (2005) 74.1% (2005)
Ellis el al. [6] 73.2% (2006) 76.4% (2006)

Considered algorithm 77.3% 83.8%

Table 2. Result comparison. The number in parentheses
is the year when their algorithms were submitted to the
MIREX.

main (3950 cent and 8750 cent in cent domain). The Han-
ning window was used with 48ms frame length and 10ms
frame hop size. α = 0.98 in Eqn. (8) was used. Np = 500
in Eqn. (13) was used.

The estimated melody is correct when the absolute value
of the difference between the ground-truth frequency and
estimated frequency is less than 50 cent ( 1

4 tone). The
performance of the considered algorithm was evaluated in
terms of raw pitch accuracy (RPA) and raw chroma ac-
curacy (RCA). The RPA is defined as the proportion of
frames in which the estimated melody pitch is within ± 1

4

tone of the reference pitch. And the RCA is defined in
the same manner as the raw pitch accuracy; however, both
the estimated and reference frequencies are mapped into a
single octave in order to forgive octave transpositions.

The considered algorithm was compared to the other
famous melody extraction algorithms such as algorithms
proposed by Goto [2], Paiva et al. [3], Marlot [4], Ryyna-
nen el al. [5], and Ellis et al. [6]. Their performances are
based on results of the Music Information Retrieval Evalu-
ation eXchange (MIREX) [12].

Table 2 shows the evaluation results for all algorithms
considered. The considered algorithm outperformed the
others in terms of the RPA and the RCA. The difference be-
tween the RPA and RCA is proportional octave mismatch
error. Although the algorithm in this paper is considered to
be robust against octave mismatch, the difference between
the RPA and the RCA is 6.5 %. The multiple pitch es-
timation algorithm proposed in [11] was quite simple and
vulnerable to octave error, i.e., inaccuracy in sequential im-
portance density led to inaccurate melody pitch candidates.

4. CONCLUSION

The melody extraction algorithm from the polyphonic au-
dio based on particle filter is considered in this paper. Most
people recognize music as not all of note sequences but a
special monophonic note sequence called melody. How-
ever, melody extraction from polyphonic audio is difficult
due to the following impediments: harmonic interference,
percussive sound interference, octave mismatch, and dy-
namic variation in melody. The main idea of the algorithm
is to consider probabilistic relations between melody and
polyphonic audio. Melody is assumed to follow a Markov
process, and the framed segments of polyphonic audio are
assumed to be conditionally independent given the param-
eters that represent the melody. The parameters are esti-
mated using the SIS algorithm. This paper shows that like-
lihood and state transition that are required in the SIS algo-
rithm are defined to be robust against the aforementioned
impediments. The performance of the SIS algorithm de-
pends on a sequential importance density, and this density
is designed by multiple pitch. Experimental results show
that the considered algorithm outperformed the other fa-
mous melody extraction algorithms.
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