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song’s datatype properties— hasProbabilityMood1 etc.— 
with mood prediction probabilities learned from the 112-
dimension audio features, as described in the experiment 
setting section; for SVM-based system, we construct its 
feature space by combining the 112-dimension audio fea-
tures with the 982-dimension feature space mapped from 
social tags.  

Tab. 1 gives the confusion matrix of each system, 
where C1 to C5 indicate the five mood clusters. The 
SVM-based system achieves an average classification 
accuracy of 55.7185% in 3-fold cross validation. The 
reasoning-based system achieves prediction accuracy of 
62.07%, which outperforms the SVM-based system, as 
well as having a more even precision distribution among 
clusters. The SVM-based system gives better precision 
only in predicting mood cluster3, indicating that SVM-
based method can well discriminate cluster3 (brooding, 
poignant, sad, somber, etc.). This has also been reflected 
in MIREX [1] reports. 

6.3 Knowledge Base Enrichment 

Relational content such as similar artists and albums, in-
fluences, follows, etc., are much less expensive to acquire 
from professional systems than for high level semantic 
information like music mood and usage. In all, there are 
29,253 assertions acquired from Allmusic about the rela-
tional content such as <artist> <influences, similar to, fol-
lows> <other artists>. 

To evaluate the prediction performance, we conduct a 
prediction process on artist atoms in the Knowledge Base. 
To simplify the process, we consider an artist’s tags and 
mood cluster the same as his song. We partition the artist 
axioms who are players of the album— so that we have 
the ground truth as their song’s mood label— into two 
complementary subsets: a “known” subset A_516 (with 
516 artist atoms) having ABox assertions generated from 
editorial metadata and social tag information, and the 
other is “unknown” subset A_512 (with 512 artist atoms) 
to be predicted and validated. To reduce variability, we 
perform another round by changing the A_512 to “known” 
subset. After the reasoning process, we have got 461 art-
ists in A_512, and 469 artists in A_516, who gained 

mood prediction via the inferring rules. The prediction 
precision is 50.76% for A_512 and 50.32% for A_516 
and the average precision is 50.54%. This prediction me-
thod could be effective, given random five-mood-cluster 
classification’s precision is as low as 20%. 

Some interesting knowledge can also be discovered. 
For example, genre atoms gain a set of mood prediction 
datatype value during the semantic reasoning, and after 
accumulation and normalization, some of them reflect 
very strong associations with mood. Tab. 2 lists the result 
of genre atoms ranked by their bias degree among mood 
clusters, which is in good accordance with people’s 
judgement and discovers the implied semantic associa-
tions. 

7. CONCLUSION 

We found that by unleashing music related information 
from various resources via an ontology-based system and 
by considering the internal semantic links for reasoning, 
we achieve a significant precision improvement for pre-
dicting mood. To augment the knowledge base efficiently 
and to make it free of manual annotation, we propose a 
WordNet-based method to map social tags to a pre-
defined taxomony. Although in this work we mainly dis-
cuss mood, since it is one of the most representative high-
level music semantic information, we argue that the pro-
posed method could also be applied for predicting other 
high-level semantics, for example, if music usage or ge-
nre style are of interest for an application, we could adjust 
the initiation processes and modify corresponding reason-
ing rules accordingly, so this work has potential applica-
tions for other tasks of music recommendation, indexing, 
documentation and retrieval. 
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Table 2. Ranking genre atoms according to mood bias 

Genre 
Mood probability prediction 

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5
Solo istru. 0 0.14 0.83 0.03 0 
Halloween 0.01 0.23 0 0.76 0 

Noise 0.13 0.07 0 0.07 0.73 
Comedy 0.1 0.06 0.06 0.71 0.07 
Sad core 0.01 0.03 0.71 0.09 0.16 

Punk metal 0.32 0 0.04 0 0.64 
Children’s 0 0.61 0 0.39 0 
Sweet band 0.20 0.58 0.14 0.08 0 
Hair metal 0.54 0.13 0.05 0.09 0.18 

Skiffle 0.53 0.31 0 0.04 0.12 
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