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ABSTRACT 

We investigate the problem of matching symbolic 
representations directly to audio based representations for 
applications that use data from both domains. One such 
application is score alignment, which aligns a sequence 
of frames based on features such as chroma vectors and 
distance functions such as Euclidean distance. Good 
representations are critical, yet current systems use ad 
hoc constructions such as the chromagram that have been 
shown to work quite well. We investigate ways to learn 
chromagram-like representations that optimize the 
classification of “matching” vs. “non-matching” frame 
pairs of audio and MIDI. New representations learned 
automatically from examples not only perform better than 
the chromagram representation but they also reveal 
interesting projection structures that differ distinctly from 
the traditional chromagram. 

1. INTRODUCTION 

Score alignment [4], score following [3], chord and key 
recognition [6, 7] chorus spotting [1, 8], audio-to-audio 
alignment [9, 13] and music structure analysis [2, 11] are 
all tasks where it is useful to compare two segments of 
music. A common representation for this is the 
chromagram [1], a sequence of chroma vectors, where 
each vector typically has 12 elements and each element 
represents the energy corresponding to one pitch class in 
the spectrum but not necessarily one pitch class in the 
score. Most algorithms use a distance function in 
conjunction with the chromagram representation to 
measure the similarity between frames. While it may be 
obvious, especially in hindsight, why the chromagram 
works well in many applications, it should be noted that 
the chromagram is a contrived representation, and there is 
no reason to believe it should be optimal. Very little 
research has been conducted on alternative ways to 
compare audio to audio let alone audio to symbolic 
representations. The existing approaches are generally 
domain specific. For example, in [12] the chromagram is 

made less timbre dependent by discarding the lower mel-
frequency cepstral coefficients and then projecting the 
remaining coefficients onto the twelve chroma bins. 
Another example can be found in [15] in which a binary 
chroma similarity measure is used for alignment in the 
context of cover song detection. In this work, we explore 
various ways to derive good features and functions from 
real data. We specifically look at the problem of score 
alignment directly from a MIDI representation to audio 
without going through a synthesized version of the MIDI 
data. In this paper we give a formulation based on the 
score alignment task; however, results should be 
applicable to all other problems that require frame-based 
comparison. The goal of this work is to gain insight into 
why the chromagram works in practice and to learn what 
modifications might make it work even better. Our results 
suggest that there is room for at least some improvement. 

2. THE SCORE ALIGNMENT TASK 

Our work is aimed at optimizing score alignment: finding 
a mapping from a symbolic score or standard MIDI file 
to an audio recording. The basic algorithm transforms 
both the MIDI file and the audio file into chromagrams A 
and B, which are sequences of chroma vectors. We will 
denote the chroma vector corresponding to the ith time 
frame (column) of A as Ai. Then, construct a distance 
matrix Di,j = f(Ai, Bj), where f is a distance function. The 
idea is that f is small when Ai is “similar” to Bj and large 
otherwise. Often, f is based on the cosine distance, 
correlation distance, or Euclidean distance from Ai to Bj. 
The next step uses dynamic programming to find the 
lowest-cost path from D0,0 to Dm-1,n-1, where m and n are 
the number of frames in A and B respectively. 

Path smoothing or constraints may be useful to obtain 
even more accurate alignment. Experience has shown 
that the chromagram representation for audio, and a 
chromagram-like representation for MIDI data [9] results 
in a very robust score alignment algorithm. However, the 
chromagram is an arbitrary choice. There are many other 
possible features, including the spectrum and mel 
cepstrum, and even the chromagram has parameters 
including the range of spectral bins considered. How can 
we search for better representations and distance 
functions? 
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3. THE LOG-FREQUENCY SPECTRUM OR 
“SEMIGRAM” REPRESENTATION 

Although we are interested in learning better representa-
tions and distance functions, it would be difficult to learn 
a relationship between audio and symbolic 
representations starting from raw signal frames and raw 
MIDI data. To simplify the representation, we use a 
magnitude spectrum with bins logarithmically spaced by 
semitones (12 bins per octave). The input audio is 
downsampled to a sampling rate of 11025 Hz. A frame 
duration of 93 ms with 50% overlap is used. This 
representation is able to resolve semitone differences in 
frequency across the spectrum with far less data than the 
standard magnitude spectrum where each bin has a 
constant bandwidth. By analogy to the spectrogram, we 
call this representation the semigram S: a matrix where 
each column is a semi vector and each semi vector 
element represents the magnitude associated with the 
frequency range of one semitone. We note that the 
traditional 12-element chromagram can be understood as 
an octave-folded version of the semigram.  

For MIDI data we construct a similar representation, a 
matrix R (also called a semigram), where each column 
represents a time window and each row represents a pitch 
(key number). If only one note is sounding in the time 
window at a given pitch, the matrix element is the note’s 
MIDI velocity. If the note is not on during the entire time 
window, the velocity is weighted by the fraction of time 
the note is on. If there is more than one note on at the 
given pitch, the maximum of the weighted velocities is 
used. 

4. TRAINING DATA FOR LEARNING 
PROJECTIONS 

One way to search for good distance functions is simply 
to attempt alignment with various parameter settings, but 
this kind of evaluation is difficult. How do we score 
alignments? And if the chromagram is already robust, 
then it might take a huge number of examples to find 
enough failure cases for another method to show 
improvement. 

Another possibility is to change the task. In our study, 
we use a classification task that labels frame pairs as 
“matching” or “non-matching.” We assume that opti-
mizing performance on this task will also be very good 
for the alignment task. We derive labeled training data 
(for supervised machine learning) from aligned scores, 
using 7 orchestra and wind ensemble recordings from one 
collection and 2 sets of 20 pieces from the RWC classical 
collection, as listed in Table 1. CLA1 consists of mostly 
symphonic pieces whereas CLA2 is a random selection 
of pieces with different combinations of instruments. 

The alignment for the orchestra and wind ensemble 
recordings was done using chromagrams, but post proc-
essed with some spline fitting and smoothing techniques 
that generally improved the perceptual alignment. The 
alignment for the RWC pieces are taken from alignment 

data provided by Ewert, Müller, and Grosche [5]. The 
alignments of the corresponding scores were verified to 
be acceptable by listening to the MIDI synthesized 
versions simultaneously with the original audio. 

From the aligned data, it is simple to extract all 
matching frames. To increase the number of matching 
frames and reduce overfitting to specific keys, we trans-
pose the matching frames up to +6 and –5 semitone steps, 
thus covering all 12 chromatic degrees. To obtain non-
matching frames, we select a random frame from audio 
for each frame from the MIDI data. These randomly 
selected pairs will run the gamut from very similar to 
very different, but for training purposes, we consider 
them all to be examples of “non-matching.” For the 
training, the number of “non-matching” frames is equal 
to the number of “matching” frames including 
transpositions. All audio listed in the table was used for 
training, resulting in about 106 matching and the same 
number of non-matching frame pairs after transposition. 

Table 1. The training data. 
Recording ID Duration(secs.)
Tarantella from Incidental Suite, C. T. Smith TAR 127
Nocturne from Incidental Suite, C. T. Smith NOC 351
The Music of Disneyland, arr. by J. Brubaker DIS 499
Medieval Legend, M. Story LEG 248
The Travelin’ Hat Rag, D. Bobrowitz HAT 162
The Thunderer, J. Sousa THU 148
Rondo from Incidental Suite, C. T. Smith RON 168
RWC Classical Music Collection (20 pieces) CLA1 1182
RWC Classical Music Collection (20 pieces) CLA2 1192

5. LEARNING A FEATURE VECTOR 

As a preliminary study, to find a good distance function 
for alignment, we trained a multi-layer perceptron neural 
network to classify semi vector pairs as “matching” or 
“non-matching.” The inputs were midi and spectral 
vectors and the output was trained to be 0 or 1 based on 
whether the vectors were matching or not. 20 hidden 
nodes were used. We trained this on a particular set of 
three pieces: HAT, LEG  and RON. These yielded 92.3% 
accuracy on the training data. Testing individually we 
obtained HAT: 89.5%, LEG: 93.0%, RON: 90.5%, TAR: 
83.8%, NOC: 85.3%, DIS: 87.7 % and THU: 86.9%. We 
also trained the neural network separately on the 20-piece 
RWC sets and tested on the remaining 36 pieces in that 
set. We obtained 94.0% and 86.4% accuracy for CLA1, 
and 90.2% and 89.0% accuracy for CLA2 on the training 
and test data respectively. These results showed us that a 
model of this nature could generalize a matched-
unmatched classification quite well with the given input 
representations. To reiterate our aim in this work, we are 
interested in understanding why chroma vectors work so 
well, whether they work better than a trained neural net, 
and whether variations can work even better. After all, 
the chroma vector is basically one particular projection 
from the semi vector. We can use machine learning to 
explore the space of projections and visualize the results 
to gain better understanding of the nature of the 
projections that work better. 

Let us first write the chroma vector computation as a 
projection. For MIDI data, we have the p × m semigram 
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R. We define an r × p matrix L (r = 12) that projects each 
semi vector (column) of R to a chroma vector. Similarly, 
we define an r × q matrix M to project the audio q x m 
semigram S to chroma vectors: 
 A = LR (2) 

 B = MS (3) 
Matrices A and B consist of pairs of feature vectors 

resulting from the respective projections in L and M. We 
first use this framework with fixed projections and then  
generalize the approach by training these projections to 
better understand their nature and compare them with the 
commonly used ones. Figure 1 illustrates the standard 
form of M (and similarly for L), which collapses octaves 
in the semigram to form a 12-element chroma vector. 
Note that the frequency ranges corresponding to the 
audio semigram (the horizontal axis) are labeled with 
midi numbers. 

 
Figure 1. The conventional projection from 
semigram (log-frequency discrete magnitude 
spectrogram) to chromagram. 

Next, a standard distance is taken between two corre-
sponding feature vectors to obtain a measure of 
similarity. Hence, the required distance for the score 
alignment algorithm in terms of two input semi vectors Ri 
and Sj is given by f(Ai, Bj)=C(LRi, MSj), where f 
represents the desired distance and C is the centered 
cosine distance (found by first removing the means of the 
vectors and then calculating the cosine distance). To 
obtain a binary output (“matched” or “non-matched”), the 
distance is compared to a fixed threshold. This result is 
used for evaluation, but for training, we use the 
continuous real value as the output and try to train the 
system to output a zero (0) or one (1) value. 

Now, suppose we generalize the chromagram to allow 
any projection. Although this is not a neural network, the 
back-propagation algorithm can be used to learn weights 
for the matrices L and M. The basic idea is to evaluate 
the partial derivative of the output with respect to each 
element of each matrix. Then, for each training example, 
the partial derivative for each coefficient is scaled by the 
output error, multiplied by a small rate parameter, and 
subtracted from the coefficient, thus adjusting each 
coefficient in a direction that would move the output 
closer to the correct value. This update is applied to all 
elements in the M and L matrices for all training frame 
pairs, and this process is iterated many times until the 
output converges. Given a large enough dimension r, this 
gradient descent algorithm will normally converge to a 
local optimum. 

We can write C(LRi, MSj) as D(xk, R, S) where xk is 
some element of M or L, letting the remainder of M and 
L be constants for the moment. We can then evaluate 
D(xk + eps, R, S) - D(xk, R, S) to estimate the partial 
derivative of D with respect to xk. The learning algorithm 
is as follows: 

 
while convergence criterion not met 
    for all pairs R and S 
        for each parameter indexed by k 
            deltak = D(xk + eps, R, S) - D(xk, R, S) 
            errork = D(xk, R, S) - GT 
            new xk = xk - alpha * errork * deltak 

In this algorithm, eps is a small number used to 
calculate the derivative, GT is the ground truth and it has 
a value of 0 when S matches R and 1 otherwise. The 
constant alpha is the learning rate. 

The training can be performed in different ways. 
Normally, both matrices co-learn but it is also possible to 
fix the weights of one matrix and learn the other. The 
initial values for both matrices can be assigned to chroma 
mappings or assigned random values. In addition to this, 
different learning rates for the matrices can be set. 

One advantage of using a linear projection 
(multiplication by L and M) to obtain paired feature 
vectors is that the matrix can be visualized to give some 
insight as to what features are being used by the system. 
For example, if the chromagram representation were 
optimal, we would expect L and M to maintain their 
projections shown in Figure 1 during training. In 
contrast, Figure 2 shows the actual result of learning 
matrix M starting from a chroma mapping. In this 
particular case, the learned weights are systematically 
different. 

 
Figure 2. The trained matrix M with initial 
chroma pattern and fixed L with chroma 
projection (as in Figure 1). 

 
Figure 3. The trained M matrix with random 
initial values and initial chroma pattern for L. 

In comparison to the preceding two figures, Figure 3 
shows a trained M where initial weights were random. 
The L matrix had initial values for the chroma projection 
and was allowed to co-learn with M. The matrix in 
Figure 3 is similar to the chromagram in that each row 
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corresponds to the detection of a different pitch class or 
chroma. In at least some of the rows, there is a clear 
pattern of high weights separated by octaves. 

The matrix in Figure 2 differs from the chroma 
mapping in several ways. First, the matrix is not 
symmetric, but this would be expected from the 
asymmetry of the training data and the nature of the 
training algorithm. Second, the rows are not just selecting 
octaves and pitch classes. It has been noted that the 
chromagram does not really compute the strength of 12 
pitch classes because harmonics of the fundamental will 
generally include energy in bins that are mapped to other 
pitch classes. Here, we see that learned rows are selecting 
not only octave-related frequencies, but some fifths, 
thirds and other relationships. In fact, the rows are quite 
similar, at least for the octaves, fifths and major thirds, to 
pitch histograms for diatonic scales and the Krumhansl 
template [10] for key finding. This relationship has been 
studied in [16]. In this study, the empirical profiles have 
been found to present statistically significant correlations 
with tonal profiles obtained from human judgments. They 
demonstrate this by extracting tonal profiles based on 
covariance analysis of chroma features computed from 
western tonal musical recordings. Similarly, in our case, 
we find that the rows contain effects of both pitch 
distributions and overtone strength distributions. It seems 
likely that all of these factors play a role in determining 
the optimal patterns. A third property we can observe in 
the learned matrix is that low and high frequencies seem 
to have less significance. There is more variation between 
rows in the middle frequencies. In this work, the note 
range for the midi semigram was chosen to be from E1 to 
D#7 and the range for the audio semigram was chosen to 
be E3 to D#7. The audio semigram has a shorter note span 
than the midi semigram because of the time-frequency 
trade-off for the given time window length, which is kept 
short in the interest of higher time resolution.  

We have learned the matrices many times using 
different training data and different initial conditions. 
Ideally, the matrices would converge to a configuration 
where the 12 rows represent 12 unique transpositions of 
some underlying pattern. To test this, we can rotate each 
row left and right until the correlation with a commonly 
used pitch distribution, such as the Krumhansl template, 
is maximized. For this, the pitch-class Krumhansl 
template is unwrapped to span multiple octaves and is 
weighted by a Hann window. The choice of the type of 
pitch distribution is not critical because the purpose of 
the window is only to shift the elements in a row to line 
up with the other rows.  Figure 4 shows the aligned 
matrix M, the averages over rows of M and the weighted 
Krumhansl template used in the alignment. We observe 
that there is usually a unique shift (modulo 12) for each 
row of a pattern that is somewhat similar between rows 
of both matrices. However, there are also some 
irregularities possibly due to registral pitch effects and 
co-learning dynamics of the matrices.  

It is reasonable to assume that there is some 
underlying “ideal” pattern that is learned in 12 different 

transpositions. Next, we test this assumption by forcing 
all 12 rows to contain the same basic pattern, shifted by 
12 different offsets. First, we average the aligned matrix 
over all rows to find the estimated “ideal” pattern as 
shown in the middle plot of Figure 4. We then form a 
new matrix by copying the “ideal" pattern into every row 
and then un-rotating the rows according to the rotations 
performed to obtain the aligned matrix. The effect is to 
force the matrix to a more symmetric configuration and 
perhaps eliminate any overfitting due to the many 
degrees of freedom offered by an unconstrained matrix. 
Figure 5 shows the resulting un-rotated matrix. We can 
then re-evaluate the test data with the new matrices and 
compare the performance to the trained versions. This 
shows us how well the single pattern captures the 
essential information. The evaluations have been carried 
out with this process applied to L and M separately.  

 

 

 
Figure 4. Matrix M aligned (upper plot). Aver-
age over rows of the aligned matrix (middle 
plot) and the weighted multi-octave Krumhansl 
template (lower plot). The sub-peaks in the 
middle plot represent major 3rds and perfect 
5ths or perhaps 5th and 3rd harmonics. 

 

 
Figure 5. Un-rotated M after averaging over 
rows of the aligned matrix. 

Learning can alternatively be started from random 
weights in both matrices. In this case, comparable 
classification accuracy is achieved, however, neither 
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matrix exhibits an easily visualizable structure similar to 
those seen in the preceding figures.    

6. EVALUATION 

Several different evaluations have been carried out on 
the data set. The first evaluation used a group consisting 
of 4 pieces (TAR, NOC, DIS, RON) for training and the 
remaining three pieces (LEG, HAT, THU) for testing. For 
training, eleven unique transpositions were added to the 
original aligned MIDI semigram - audio semigram pairs. 
The aligned pairs were followed by the same length of 
random pairs. For testing, four transpositions of the test 
pieces and a fresh set of random pairs were added to the 
aligned test set to assess its generalization capability. The 
classification accuracy of this test is given in the top row 
of Table 2 and is abbreviated TNDR. The table is divided 
into two groups of 3 columns with the first group 
showing the accuracy of the model run on the training 
data itself and the second group showing the accuracy for 
the test data. Within each group the column labeled ‘LE’ 
shows the results for the learned matrices, ‘LU’ for the 
aligned, averaged and un-rotated matrices and ‘CH’ for 
the matrices in standard chroma form (as shown in Figure 
1 for M). A similar evaluation was performed by inter-
changing the test and training sets in the evaluation men-
tioned above. The results are given in the second row of 
Table 2 with the abbreviation LHT. We also tried using 
Krumhansl templates (rotated to 12 transpositions) as the 
rows of the projection matrix, but this did not work as 
well as the standard chromagram. Although we omit 
those results here, as a summary, they performed about 
3% less than the chroma mapping. 

Another type of evaluation was carried out by training 
on each piece in Table 1 and then testing the alignment 
function using the remaining six pieces (hold out testing). 
The remaining seven rows of Table 2 show the results of 
this evaluation. 

Table 2. Accuracy for group and hold out tests. 
LE: learned, LU: learned with averaging and 
un-rotating, CH: chroma. 

 Training Data (%) Test Data (%) 
Rec. LE LU CH LE LU CH 

TNDR 89.6 88.7 85.4 90.5 89.6 87.4 
LHT 91.3 90.5 87.3 88.9 88.5 85.3 
TAR 90.0 86.8 83.4 88.2 87.8 86.2 
NOC 87.6 87.0 83.5 88.9 89.1 86.5 
DIS 90.8 90.6 87.4 89.0 88.8 85.3 
LEG 91.9 88.0 88.0 88.1 84.3 85.6 
HAT 91.4 90.0 83.9 88.9 88.6 86.1 
THU 91.6 91.2 88.3 88.5 88.5 85.7 
RON 91.5 89.4 85.1 88.8 88.9 86.2 
CLA1 93.1 92.7 90.6 90.0 89.6 88.3 
CLA2 92.0 91.4 89.2 91.1 90.8 89.1 

 
Overall, for all the tests explained above, learned 

(LE) and learned averaged (LU) tests performed better 
than chroma (CH) with one exception in piece LEG 
where LU was lower than CH. This shows that averaging 
in this particular case did not work well and degraded the 
performance. In general, however, results suggest that an 
asymmetrical multi-octave chroma mapping is better than 

the commonly used octave independent symmetrical 
mapping as suggested by [7] and [14] and others.  

CLA1 and CLA2 refer to the training data given in 
Table 1. Each of these were tested with the remaining 36 
pieces (about 2000 seconds) from the RWC collection. 

The accuracy numbers partially reflect the effects of 
some foreseeable factors in performing this evaluation: 
training alignments are not perfectly aligned at the frame 
level, the time variation of the spectral content in the 
audio is not reflected in the MIDI representation (timbre 
effects), audio contains percussion but the MIDI does 
not.  

7. RESULTS 

The most interesting result is that learned 
representations outperform chroma vectors on the task of 
discriminating aligned vs. unaligned audio frames. 
Perhaps this should not be too surprising since machine 
learning from large sets of training data often 
outperforms hand-tuned algorithms or features. Not only 
is there nothing “magic” about the chromagram, we see 
comparable performance from a neural network trained to 
answer the question “Does this MIDI frame align to that 
spectral frame?” 

We also explored a particular model that maps the 
spectrum (and MIDI data) into 12-element vectors and 
computes similarity between these vectors using a 
standard distance function. Even though this certainly 
loses information, it allows us to study the representation, 
which can be viewed as a projection of the spectrum to a 
new space defined by a set of basis vectors. These 
vectors are particularly interesting. With chromagrams, 
the basis vectors are simply chroma (pitch classes), but 
with our learned projections, the basis vectors also show 
a remarkable similarity to pitch histograms obtained from 
music in a fixed key. Thus, even assuming the general 
form of the chromagram as a projection from the 
spectrum to a lower-dimensional space, we see room for 
improvement. This is evident from the fact that a learning 
system initialized with the chromagram projection will 
systematically adjust and improve to a new projection.    

8. FUTURE WORK 

We have limited our study to a 12-element vector repre-
sentation for comparison to the chromagram. It would be 
interesting to study larger (and smaller) vectors. In par-
ticular, we wonder whether with additional dimensions, 
the learning algorithms would build different patterns for 
major, minor, and dominant tonalities, whether some 
patterns would reflect timbre or overtone characteristics, 
or whether other structures would be formed. The 
projection matrix formulation of the problem allows these 
potential structures to be observed. It should be noted that 
the nature of the M and L matrices is slightly different in 
that M incorporates the spectral structure of notes 
whereas L deals with notes alone. 

The similarity of our learned patterns to the pitch his-
togram or Krumhansl template deserves further analysis. 
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Is this a coincidence? Are the learned patterns a 
reflection of the pitch distributions as well as average 
overtone strength distributions in our training data, or 
have pitch distributions in tonal music evolved to 
optimize the listener’s ability to recognize music 
structures? Perhaps both forces are at work. 

9. CONCLUSIONS 

We have described methods for learning features that are 
useful for score alignment and other comparative and 
similarity based tasks such as identification of repeating 
sections, subsequence searching and template based 
chord recognition. The learned features out-perform the 
chromagram representation at least in the task of 
discriminating aligned from non-aligned frames of music. 
Unlike the chromagram representation, which is a simple 
projection based on pitch classes, the learned 
representation uses a projection that appears to be based 
on pitch distributions as well as the harmonic series 
common to most pitched musical instruments. In 
addition, the middle frequencies and pitches receive the 
most weight in the patterns, indicating that high and low 
frequencies are less useful for alignment. Another 
advantage of such an approach in MIR is that an 
alignment function can be directly learned from and used 
with almost native representations in both spectral and 
symbolic domains, thus bridging the gap between audio 
and symbolic music collections. We believe this work 
represents a significant advance by suggesting better 
features for music audio analysis, particularly for 
alignment and discovering music structure. 
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