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ABSTRACT 

We investigate the problem of matching symbolic 
representations directly to audio based representations for 
applications that use data from both domains. One such 
application is score alignment, which aligns a sequence 
of frames based on features such as chroma vectors and 
distance functions such as Euclidean distance. Good 
representations are critical, yet current systems use ad 
hoc constructions such as the chromagram that have been 
shown to work quite well. We investigate ways to learn 
chromagram-like representations that optimize the 
classification of “matching” vs. “non-matching” frame 
pairs of audio and MIDI. New representations learned 
automatically from examples not only perform better than 
the chromagram representation but they also reveal 
interesting projection structures that differ distinctly from 
the traditional chromagram. 

1. INTRODUCTION 

Score alignment [4], score following [3], chord and key 
recognition [6, 7] chorus spotting [1, 8], audio-to-audio 
alignment [9, 13] and music structure analysis [2, 11] are 
all tasks where it is useful to compare two segments of 
music. A common representation for this is the 
chromagram [1], a sequence of chroma vectors, where 
each vector typically has 12 elements and each element 
represents the energy corresponding to one pitch class in 
the spectrum but not necessarily one pitch class in the 
score. Most algorithms use a distance function in 
conjunction with the chromagram representation to 
measure the similarity between frames. While it may be 
obvious, especially in hindsight, why the chromagram 
works well in many applications, it should be noted that 
the chromagram is a contrived representation, and there is 
no reason to believe it should be optimal. Very little 
research has been conducted on alternative ways to 
compare audio to audio let alone audio to symbolic 
representations. The existing approaches are generally 
domain specific. For example, in [12] the chromagram is 

made less timbre dependent by discarding the lower mel-
frequency cepstral coefficients and then projecting the 
remaining coefficients onto the twelve chroma bins. 
Another example can be found in [15] in which a binary 
chroma similarity measure is used for alignment in the 
context of cover song detection. In this work, we explore 
various ways to derive good features and functions from 
real data. We specifically look at the problem of score 
alignment directly from a MIDI representation to audio 
without going through a synthesized version of the MIDI 
data. In this paper we give a formulation based on the 
score alignment task; however, results should be 
applicable to all other problems that require frame-based 
comparison. The goal of this work is to gain insight into 
why the chromagram works in practice and to learn what 
modifications might make it work even better. Our results 
suggest that there is room for at least some improvement. 

2. THE SCORE ALIGNMENT TASK 

Our work is aimed at optimizing score alignment: finding 
a mapping from a symbolic score or standard MIDI file 
to an audio recording. The basic algorithm transforms 
both the MIDI file and the audio file into chromagrams A 
and B, which are sequences of chroma vectors. We will 
denote the chroma vector corresponding to the ith time 
frame (column) of A as Ai. Then, construct a distance 
matrix Di,j = f(Ai, Bj), where f is a distance function. The 
idea is that f is small when Ai is “similar” to Bj and large 
otherwise. Often, f is based on the cosine distance, 
correlation distance, or Euclidean distance from Ai to Bj. 
The next step uses dynamic programming to find the 
lowest-cost path from D0,0 to Dm-1,n-1, where m and n are 
the number of frames in A and B respectively. 

Path smoothing or constraints may be useful to obtain 
even more accurate alignment. Experience has shown 
that the chromagram representation for audio, and a 
chromagram-like representation for MIDI data [9] results 
in a very robust score alignment algorithm. However, the 
chromagram is an arbitrary choice. There are many other 
possible features, including the spectrum and mel 
cepstrum, and even the chromagram has parameters 
including the range of spectral bins considered. How can 
we search for better representations and distance 
functions? 
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matrix exhibits an easily visualizable structure similar to 
those seen in the preceding figures.    

6. EVALUATION 

Several different evaluations have been carried out on 
the data set. The first evaluation used a group consisting 
of 4 pieces (TAR, NOC, DIS, RON) for training and the 
remaining three pieces (LEG, HAT, THU) for testing. For 
training, eleven unique transpositions were added to the 
original aligned MIDI semigram - audio semigram pairs. 
The aligned pairs were followed by the same length of 
random pairs. For testing, four transpositions of the test 
pieces and a fresh set of random pairs were added to the 
aligned test set to assess its generalization capability. The 
classification accuracy of this test is given in the top row 
of Table 2 and is abbreviated TNDR. The table is divided 
into two groups of 3 columns with the first group 
showing the accuracy of the model run on the training 
data itself and the second group showing the accuracy for 
the test data. Within each group the column labeled ‘LE’ 
shows the results for the learned matrices, ‘LU’ for the 
aligned, averaged and un-rotated matrices and ‘CH’ for 
the matrices in standard chroma form (as shown in Figure 
1 for M). A similar evaluation was performed by inter-
changing the test and training sets in the evaluation men-
tioned above. The results are given in the second row of 
Table 2 with the abbreviation LHT. We also tried using 
Krumhansl templates (rotated to 12 transpositions) as the 
rows of the projection matrix, but this did not work as 
well as the standard chromagram. Although we omit 
those results here, as a summary, they performed about 
3% less than the chroma mapping. 

Another type of evaluation was carried out by training 
on each piece in Table 1 and then testing the alignment 
function using the remaining six pieces (hold out testing). 
The remaining seven rows of Table 2 show the results of 
this evaluation. 

Table 2. Accuracy for group and hold out tests. 
LE: learned, LU: learned with averaging and 
un-rotating, CH: chroma. 

 Training Data (%) Test Data (%) 
Rec. LE LU CH LE LU CH 

TNDR 89.6 88.7 85.4 90.5 89.6 87.4 
LHT 91.3 90.5 87.3 88.9 88.5 85.3 
TAR 90.0 86.8 83.4 88.2 87.8 86.2 
NOC 87.6 87.0 83.5 88.9 89.1 86.5 
DIS 90.8 90.6 87.4 89.0 88.8 85.3 
LEG 91.9 88.0 88.0 88.1 84.3 85.6 
HAT 91.4 90.0 83.9 88.9 88.6 86.1 
THU 91.6 91.2 88.3 88.5 88.5 85.7 
RON 91.5 89.4 85.1 88.8 88.9 86.2 
CLA1 93.1 92.7 90.6 90.0 89.6 88.3 
CLA2 92.0 91.4 89.2 91.1 90.8 89.1 

 
Overall, for all the tests explained above, learned 

(LE) and learned averaged (LU) tests performed better 
than chroma (CH) with one exception in piece LEG 
where LU was lower than CH. This shows that averaging 
in this particular case did not work well and degraded the 
performance. In general, however, results suggest that an 
asymmetrical multi-octave chroma mapping is better than 

the commonly used octave independent symmetrical 
mapping as suggested by [7] and [14] and others.  

CLA1 and CLA2 refer to the training data given in 
Table 1. Each of these were tested with the remaining 36 
pieces (about 2000 seconds) from the RWC collection. 

The accuracy numbers partially reflect the effects of 
some foreseeable factors in performing this evaluation: 
training alignments are not perfectly aligned at the frame 
level, the time variation of the spectral content in the 
audio is not reflected in the MIDI representation (timbre 
effects), audio contains percussion but the MIDI does 
not.  

7. RESULTS 

The most interesting result is that learned 
representations outperform chroma vectors on the task of 
discriminating aligned vs. unaligned audio frames. 
Perhaps this should not be too surprising since machine 
learning from large sets of training data often 
outperforms hand-tuned algorithms or features. Not only 
is there nothing “magic” about the chromagram, we see 
comparable performance from a neural network trained to 
answer the question “Does this MIDI frame align to that 
spectral frame?” 

We also explored a particular model that maps the 
spectrum (and MIDI data) into 12-element vectors and 
computes similarity between these vectors using a 
standard distance function. Even though this certainly 
loses information, it allows us to study the representation, 
which can be viewed as a projection of the spectrum to a 
new space defined by a set of basis vectors. These 
vectors are particularly interesting. With chromagrams, 
the basis vectors are simply chroma (pitch classes), but 
with our learned projections, the basis vectors also show 
a remarkable similarity to pitch histograms obtained from 
music in a fixed key. Thus, even assuming the general 
form of the chromagram as a projection from the 
spectrum to a lower-dimensional space, we see room for 
improvement. This is evident from the fact that a learning 
system initialized with the chromagram projection will 
systematically adjust and improve to a new projection.    

8. FUTURE WORK 

We have limited our study to a 12-element vector repre-
sentation for comparison to the chromagram. It would be 
interesting to study larger (and smaller) vectors. In par-
ticular, we wonder whether with additional dimensions, 
the learning algorithms would build different patterns for 
major, minor, and dominant tonalities, whether some 
patterns would reflect timbre or overtone characteristics, 
or whether other structures would be formed. The 
projection matrix formulation of the problem allows these 
potential structures to be observed. It should be noted that 
the nature of the M and L matrices is slightly different in 
that M incorporates the spectral structure of notes 
whereas L deals with notes alone. 

The similarity of our learned patterns to the pitch his-
togram or Krumhansl template deserves further analysis. 

415

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



  
 

Is this a coincidence? Are the learned patterns a 
reflection of the pitch distributions as well as average 
overtone strength distributions in our training data, or 
have pitch distributions in tonal music evolved to 
optimize the listener’s ability to recognize music 
structures? Perhaps both forces are at work. 

9. CONCLUSIONS 

We have described methods for learning features that are 
useful for score alignment and other comparative and 
similarity based tasks such as identification of repeating 
sections, subsequence searching and template based 
chord recognition. The learned features out-perform the 
chromagram representation at least in the task of 
discriminating aligned from non-aligned frames of music. 
Unlike the chromagram representation, which is a simple 
projection based on pitch classes, the learned 
representation uses a projection that appears to be based 
on pitch distributions as well as the harmonic series 
common to most pitched musical instruments. In 
addition, the middle frequencies and pitches receive the 
most weight in the patterns, indicating that high and low 
frequencies are less useful for alignment. Another 
advantage of such an approach in MIR is that an 
alignment function can be directly learned from and used 
with almost native representations in both spectral and 
symbolic domains, thus bridging the gap between audio 
and symbolic music collections. We believe this work 
represents a significant advance by suggesting better 
features for music audio analysis, particularly for 
alignment and discovering music structure. 

10. ACKNOWLEDGEMENTS 

This material is based on work partly supported by the 
National Science Foundation under Grant Nos. 0534370 
and 0855958. We would like to thank Meinard Müller for 
providing alignment data for the RWC dataset. 

11. REFERENCES 

[1] M. Bartsch and Wakefield, G. H. “Audio Thumb-
nailing of Popular Music Using Chroma-based 
Representations,” IEEE Transactions on 
Multimedia, vol. 7, pp. 96-104, Feb. 2005. 

[2] Dannenberg, R. and Hu, N. “Pattern Discovery 
Techniques for Music Audio,” Int. Symposium on 
Music Information Retrieval (ISMIR), Paris: 
IRCAM, pp. 63-70, 2002. 

[3] Dannenberg, R. and Raphael, C. “Music Score 
Alignment and Computer Accompaniment,” 
Commun. ACM, 49(8) (August 2006), pp. 38-43. 

[4] Dixon, S. and Widmer, G. “Match: A Music 
Alignment Tool Chest,” Int. Symposium on Music 
Information Retrieval (ISMIR), London: Queen 
Mary, Univ. of London and Goldsmiths College, 
Univ. of London, 2005. 

[5] Ewert, S., Müller, M., and Grosche, P. “High 
Resolution Audio Synchronization Using Chroma 
Onset Features,” Proc. of IEEE International 
Conference on Acoustics, Speech, and Signal 
Processing (ICASSP), Taipei, Taiwan, pp. 1869-
1872, 2009. 

[6] Fujishima, T. “Realtime Chord Recognition of 
Musical Sound: A System Using Common Lisp 
Music,” Proc. of the 1999 Int. Computer Music 
Conference (ICMC), pp. 464-467, 1999. 

[7] Gómez, E., “Tonal Description of Music and 
Audio Signals,” Ph.D. dissertation, Barcelona: 
MTG, Universitat Pompeu Fabra, 2006. 

[8] Goto, M. “A Chorus-Section Detection Method 
for Musical Audio Signals and Its Application to 
a Music Listening Station,” IEEE Trans. On 
Audio, Speech, and Language Processing, vol. 
14, no. 5, pp. 1783-1794, Sep. 2006. 

[9] Hu, N., Dannenberg, R., and Tzanetakis, G. 
“Polyphonic Audio Matching and Alignment for 
Music Retrieval,” Proc. IEEE Workshop on 
Applications of Signal Processing to Audio and 
Acoustics (WASPAA), New Paltz, USA, pp. 185-
188, 2003. 

[10] Krumhansl, C. Cognitive Foundations of Musical 
Pitch. New York: Oxford Univ. Press, 1990. 

[11] Lu, L., Wang, M., and Zhang, H.-J. “Repeating 
Pattern Discovery and Structure Analysis from 
Acoustic Music Data.” Proc. of the 6th ACM 
SIGMM International Workshop on Multimedia 
Information Retrieval. New York: Assoc. for 
Computing Machinery, pp. 275-282, 2004. 

[12] Müller, M., Ewert, S., and Kreuzer, S. “Making 
Chroma Features more Robust to Timbre 
Changes,” Proc. of IEEE International Con-
ference on Acoustics, Speech, and Signal 
Processing (ICASSP), Taipei, Taiwan, pp. 1869-
1872, 2009. 

[13] Müller, M., Kurth, F., and Clausen, M. “Audio 
Matching via Chroma-Based Statistical Features,” 
Int. Symposium on Music Information Retrieval 
(ISMIR), pp. 144-149, Oct. 2006. 

[14] Pauws, S. “Musical Key Extraction from Audio,” 
Int. Symposium on Music Information Retrieval 
(ISMIR), Barcelona, Spain, 2004. 

[15] Serrà, J., Gómez, E., Herrera, P. and Serra, X. 
“Chroma Binary Similarity and Local Alignment 
Applied to Cover Song Identification,” IEEE 
Transactions on Audio, Speech and Language 
Processing, 16-6, pp. 1138-1152, August 2008. 

[16] Serrà, J., Gómez, E., Herrera, P. and Serra, X. 
“Statistical Analysis of Chroma Features in West-
ern Music Predicts Human Judgments of 
Tonality,” Journal of New Music Research, 37-4, 
pp. 299-309, December 2008. 

 

 

416

11th International Society for Music Information Retrieval Conference (ISMIR 2010)




