
zero outside this range. Depending on the values of its
parameters α and β, the density function can take several
forms, for example, that of a uniform distribution, it can
be strictly increasing or decreasing, U-shaped, or – as in
our case – it is unimodal (α > 1 and β > 1). Its density
function is defined as

f(x)α,β =
1

B(α, β)
xα�1 (1 � x)β�1 (4)

where B is the beta function

B(α, β) = 2

π/2Z
0

cos2α�1 θ sin2β�1 θ dθ (5)

Mode x̂ and variance σ2 of the distribution are therefore
given by

x̂ =
α � 1

α+ β � 2
(6)

σ2 =
αβ

(α+ β)2(α+ β + 1)
(7)

In our application, we set the parameters α and β by
fixing a mode x̂ and a variance σ2. The former is assumed
to be at the onset time we expect according to score and
anchor notes. Since the density function is only defined
on [0, 1], we use a linear projection to convert between the
domain of the beta distribution and the score time.

The variance is chosen such that it allows for expres-
sive variations and inexactnesses of the anchor extraction,
but prevents notes from being placed at rhythmically un-
reasonable timings. Experiments showed that the value
min(x̂, 1� x̂)/20 results in plausible expectation strengths.

Two such functions are depicted in Figure 1. The up-
per plot shows the onset likelihood for the onset time of
the third note, assuming that the first and fifth note are an-
chors. The time span between the anchor comprises three
beats. Since the note should be played after the first out
of these three beat-to-beat intervals, the function is clearly
skewed. This is desirable because a musician’s freedom of
expressive timing is greater when the score calls for longer
inter-onset intervals. The second function is the likelihood
of the fourth note’s onset time given notes number one and
six as anchors. The function is now symmetric, since the
onset time given by the score is exactly half the time span
(two out of four beat-to-beat intervals).

In order to transfer these expectation strength functions
from the score into the audio domain, another linear pro-
jection is applied.

4.2 Onset estimation

To extract revised onset estimates for non-anchor notes, we
calculate the constant Q spectrogram over the time span in
which the onset likelihood as described above is greater
than zero. The parameters of the constant Q spectrogram
are chosen such that each energy bin corresponds to a spe-
cific pitch. The hop size is set to 256 frames, resulting in a
very high overlap ratio at the lower bins.

Figure 1. Onset expectation strength for the 3rd and 4th

note.

For the purpose of onset detection, energy changes are
calculated and half-wave rectified. In order to incorporate
the score information, the result is then weighted by the
expectation strength. The final onset is set to the time cor-
responding to the maximum of this detection function.

5. EXPERIMENTAL RESULTS

5.1 Evaluation Method

Since this work was done in the context of musical perfor-
mance and style analysis, we used classical (polyphonic)
piano music to evaluate our system. The test data con-
sisted of the first movements of 11 Mozart sonatas played
by a professional pianist. The overall performance time
amounted to more than one hour, comprising more than
30.000 notes. The instrument used for the performance
was a computer-controlled Bösendorfer SE290 grand pi-
ano, which enables exact logging of all events such as keys
being hit or released and changes in pedal pressure.

The evaluation was done using mechanical scores rep-
resented in MIDI format and the real audio recording from
the performances as input data. The data recorded by the
Bösendorfer SE290 served as ground truth. The main eval-
uation criterion was the absolute timing displacement be-
tween aligned notes and the ground truth.

On the one hand, robustness and a high overall accu-
racy are important issues. On the other hand, our work
is directed towards providing methods for semi-automatic
audio annotation. One objective of such a system must
be to minimize human input. In post-processing, the user
must correct the onset time as soon as there is a notice-
able error. Therefore, we investigated not only the median
and percentile errors, but also how many of the notes were
detected well enough for a human to accept it.

In [4], listening tests showed that the human hearing
system does not detect timing variations of up to 10 ms in
sequences of short notes, and even greater displacements
in sequences of very long notes. Therefore, our evaluation
criteria were the proportions of notes aligned with a dis-
placement of less than 10 ms and 50 ms respectively. The
50 ms tolerance was included because it is a common mar-
gin in onset detection.
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50% < x[ms] 75% < x[ms] 95% < x[ms] max [ms]
piece duration # notes # anchors

non.a. anch. non.a. anch. non.a. anch. non.a. anch.
K.279-1 4:55 2803 1136 15.2 5.5 29 11 138 37 879 494
K.280-1 4:48 2491 1257 23.2 5.4 45 11 165 46 687 664
K.281-1 4:29 2648 1235 23.7 6.1 48 12 176 48 993 442
K.282-1 7:35 1907 705 23.8 6.9 60 13 439 72 4805 3008
K.283-1 5:22 3304 1130 16.2 7.9 28 13 75 34 673 467
K.284-1 5:17 3700 1223 15.2 6.1 31 14 120 71 1000 502
K.330-1 6:14 3160 1176 16.3 5.6 30 10 179 35 960 835
K.332-1 6:02 3470 1017 23.2 11.8 42 19 171 82 857 632
K.333-1 6:44 3774 1471 17.8 7.5 31 13 132 38 941 404
K.457-1 6:15 2993 1086 22.0 8.9 42 16 317 62 1773 1787
K.475-1 4:58 1284 483 38.4 16.3 98 24 304 115 4471 2663

Table 1. Comparison between accuracy (median, 75th percentile, 95th percentile, and maximum) of the anchor notes
(anch.) and the non-anchor notes (n.a.)

piece # non-anchors 50% < x[ms] 75% < x[ms] 95% < x[ms] max [ms]
K.279-1 1667 9.1 28 127 879
K.280-1 1234 9.2 24 147 706
K.281-1 1413 11.2 31 187 1035
K.282-1 1202 15.9 42 432 4822
K.283-1 2174 12.0 21 92 464
K.284-1 2477 9.0 26 125 1004
K.330-1 1983 9.6 21 134 835
K.332-1 2453 18.0 30 175 781
K.333-1 2303 12.1 22 93 1000
K.457-1 1907 16.5 37 246 1790
K.475-1 812 24.1 49 398 4377

Table 2. Accuracy of non-anchor notes after the refinement step (median, 75th percentile, 95th percentile, and maximum)

5.2 Evaluation Results

Table 1 presents the results of the anchor detection step.
About a third of the overall notes were chosen as anchors.
Although this seems to be a very large fraction, it is justi-
fied by the high accuracy of the selected notes. For half of
the pieces, the 95th percentile still met the 50 ms criterion
used for the evaluation of onset detection algorithms.

However, for each piece a small number of outliers were
picked as well. Some of them are due to our trade-off
between a small search window at the NMF calculation
and computational costs. Notes for which the initial align-
ment deviates from the real onset by more than a second
are post-processed using a time frame that does not even
contain the correct onset.

Table 2 shows that, in comparison to Table 1, a major-
ity of non-anchor notes were improved by the refinement
step. Both the median deviation and the 75th percentile im-
proved for all the pieces. Only the accuracy of the outliers
decreased further in some cases. This might be due to poor
anchor notes, which mislead onset detection.

The overall result as given by Table 3 shows the poten-
tial of the proposed method. It clearly outperformed the
reference algorithm from [9] in which the initial alignment
and the factorization-based post-processing were done in
a similar way but without using score information to re-
fine critical notes. Especially the proportion of note on-

sets identified with a deviation of less than 10 ms – i.e.,
the threshold of human perception, according to [4] – was
increased significantly from 40.0% to 49.8%. This is im-
portant for the construction of data acquisition tools which
are able to extract descriptions of musical expression from
audio recordings semi-automatically.

6. CONCLUSION AND FUTURE WORK

We have proposed a multi-pass method for the accurate
alignment of musical scores to corresponding audio record-
ings. The main contribution is the introduction of an ex-
pectation strength function modeling the expected onset
time of a note between two anchors. Although results are
encouraging, there are specific circumstances where the al-
gorithm fails, i.e., temporal displacement of notes is large.

One class of such errors are poor alignments at a piece’s
ending. There, two disadvantageous factors coincide. On
the one hand, there is no additional subsequent note which
could serve as hint for the alignment or as anchor in the
post-processing. On the other hand, a high degree of poly-
phony in combination with long and soft notes is to be ex-
pected at endings. Such passages are inherently difficult to
handle from a signal processing point of view.

An interesting example of such an error can be found
in the sonata K.282, in which one note was even wrongly
picked as an anchor although it was out of place by more

421

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



50% < x[ms] 75% < x[ms] 95% < x[ms] x < 10ms x < 50ms
piece # notes

ref. new ref. new ref. new ref. new ref. new
K.279-1 2803 12 7.2 27 18 101 103 43.2% 61.7% 88.4% 90.2%
K.280-1 2491 14 7.1 34 16 127 93 42.5% 63.1% 85.0% 90.8%
K.281-1 2648 15 8.5 36 19 112 114 38.5% 56.8% 83.4% 89.9%
K.282-1 1907 15 11.8 44 27 380 378 39.2% 43.5% 76.8% 83.2%
K.283-1 3304 12 10.2 26 18 65 70 44.2% 49.1% 92.2% 92.4%
K.284-1 3700 13 8.0 29 21 98 110 41.7% 58.2% 87.2% 87.7%
K.330-1 3160 11 7.6 24 15 124 103 46.7% 61.0% 89.7% 91.2%
K.332-1 3470 18 16.0 37 27 147 148 32.5% 29.7% 82.7% 87.9%
K.333-1 3774 13 9.9 20 18 80 68 42.2% 50.5% 90.1% 92.8%
K.457-1 2993 15 13.4 35 26 257 183 35.9% 38.2% 83.2% 84.8%
K.475-1 1284 24 20.1 75 37 393 376 23.6% 22.5% 66.8% 78.6%

all 31534 14 10.1 32 21 137 121 40.0% 49.8% 85.6% 88.9%

Table 3. Overall accuracy of the proposed anchor-based method (new) compared to the reference method as described
in [9] (ref.)

than three seconds. The explanation is, that the last two
chords of this piece differ by only one single note (b[-a[-
d-f and e[-a[-d-f, respectively). The algorithm was not able
to distinguish the two chords. As a consequence, the notes
of the last chord were aligned to the onset of the preced-
ing chord as well. The resulting temporal displacement of
about three seconds is slightly shorter than the duration of
the first of these chords.

This clearly leads further work towards the issues of im-
proved mechanisms for anchor detection and the handling
of inherently ”difficult“ passages, such as the endings. An
approach that could benefit both fields is the introduction
of a more sophisticated local confidence or fitness measure
for arbitrary sections of an alignment.

Another aspect which has not been considered yet is the
detection of deviations from the score, such as when the
pianists adds ornamentations or playing errors occur.
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