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(a) 1st movement, Pavane de la Belle au bois dormant.

(b) 4th movement, Les entretiens de la Belle et de la Béte.

Figure 2. Transcription of two piano excerpts from Ma
mere I’'Oye, Cing piéces enfantines pour piano a quatre
mains (1908-1910), Maurice Ravel (1875-1937).

and spectral smoothness [23], and another one based on
a sinusoidal analysis with a candidate selection exploiting
spectral features [25].

We report the evaluation results per algorithm in Ta-
bles 1 and 2 at the frame and note levels respectively. Stan-
dard evaluation metrics from the MIREX are used as de-
scribed in [2]: precision P, recall R, F-measure F, ac-
curacy A, total error Eg; , substitution error Egyps, missed
error Eyjss , false alarm error E, , mean overlap ratio M.
At the note level, the subscripts 1 and 2 represent respec-
tively the onset-based and the onset/offset-based results.

Overall, the results show that the proposed real-time
system performs comparably to the state-of-the-art off-line
algorithms of [23,25]. Using the §-divergence, the system
BND even outperforms the other algorithms. The sparse
algorithm of [14] reduces insertions and substitutions, but
augments the number of missed notes so that it actually
does not perform better than the standard scheme END.
The standard Euclidean cost also shows its limits for tran-
scription where more complex costs with the 3-divergence
give better results. We finally remark that the mean over-
lap ratio scores corroborate the observation that sustained
notes tend to be shortened.
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Alg. P R F A E tot Esubs Emiss Efa

BND 63:9 673 65:5 48:7 589 119 20:8 26:2
END 55:3 586 56:9 39:8 714 173 24:1 299
[14] 58:5 552 568 39:7 67:1 168 28:.0 22:3
[23] 61:0 667 637 46:8 65:6 104 22:9 32:3
[25] 60:0 708 65:0 48:1 60:0 163 12:8 30:8

Table 1. Frame-level transcription results per algorithm.

Alg. P. Ri1 F1 A; M1 P2 Rz F2 A
BND 755 671 71:1 55:1 56:7 30:0 266 28:2 16:4
END 57:9 582 58:1 40:9 53:9 21:4 216 21:5 12:0
[14] 57:2 563 56:8 396 54:1 21:0 207 208 11:6
[23] 58:1 737 65:0 48:1 57:7 20:7 263 23:2 13:1
[25] 33:0 588 42:3 268 55:1 11:6 207 149 8.0

Table 2. Note-level transcription results per algorithm.

6. CONCLUSION

This paper addressed the problem of real-time polyphonic
music transcription by employing NMF techniques. We
discussed the use of the (-divergence as a cost function
for non-negative decomposition tailored to real-time tran-
scription. The obtained results show that the proposed
system can outperform state-of-the-art off-line approaches,
and are encouraging for further development.

A problem in our approach is that templates are inher-
ently considered as stationary. One way to tackle this is
to consider representations that capture variability over a
short time-span as in [7]. We could also combine NMF
with a state representation and use templates for each state.

The template learning method can be further improved
by using extended NMF problems and algorithms to learn
one or more templates for each note. Such issues have not
been developed but interesting perspectives include learn-
ing sparse or harmonic templates. Using the 3-divergence
during template learning in our experience did not improve
the results. Further considerations are needed on this line.

In a live performance setup such as ours, the templates
can be directly learned from the corresponding instrument.
Yet in other setups, the issue of generalization must be
carefully considered and will be discussed in future work.
We think of considering adaptive templates by adapting an
approach proposed in [13] to real-time decomposition.

We would like also to improve the robustness against
noise, by keeping information from the activations during
template learning, or by using noise templates as in [7].
In addition, we want to develop more elaborate sparsity
controls than in [6, 7, 14]. In our approach, sparsity is
controlled implicitly during decomposition. Yet in some
applications, specially for complex problems such as audi-
tory scene analysis, controlling explicitly sparsity becomes
crucial. A forthcoming paper will address this issue.

Last but not least, the proposed system is currently un-
der development for the Max/MSP real-time computer mu-
sic environment and will be soon available for free down-
load on the companion website.
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