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ABSTRACT

In this paper, we investigate the problem of real-time poly-
phonic music transcription by employing non-negative ma-
trix factorization techniques and the β-divergence as a cost
function. We consider real-world setups where the mu-
sic signal arrives incrementally to the system and is tran-
scribed as it unfolds in time. The proposed transcription
system is addressed with a modified non-negative matrix
factorization scheme, called non-negative decomposition,
where the incoming signal is projected onto a fixed basis of
templates learned off-line prior to the decomposition. We
discuss the use of non-negative matrix factorization with
the β-divergence to achieve the real-time decomposition.
The proposed system is evaluated on the specific task of
piano music transcription and the results show that it can
outperform several state-of-the-art off-line approaches.

1. INTRODUCTION

The task of music transcription consists in converting a
raw music signal into a symbolic representation such as a
score. Considering polyphonic signals, this task is closely
related to the problem of multiple-pitch estimation which
has been largely investigated for music as well as speech,
and for which a wide variety of methods have been pro-
posed [8]. Non-negative matrix factorization has already
been used in this context, with off-line approaches [1, 3,
20, 22–24] as well as on-line approaches [4, 6, 7, 17, 21].

Generally speaking, non-negative matrix factorization
(NMF) is a technique for data analysis where the observed
data are supposed to be non-negative [16]. The main phi-
losophy of NMF is to build up these observations in a con-
structive additive manner, what is particularly interesting
when negative values cannot be interpreted (e.g. pixel in-
tensity, word occurrence, magnitude spectrum).

In this paper, we employ NMF techniques to develop a
real-time system for polyphonic music transcription. This
system is thought as a front-end for musical interactions in
live performances. Among applications, we are interested
in computer-assisted improvisation for instruments such as
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the piano. We do not discuss such applications in the paper
but rather concentrate on the system for polyphonic music
transcription and invite the curious reader to visit the com-
panion website 1 for complementary information and ad-
ditional resources. The proposed system is addressed with
an NMF scheme called non-negative decomposition where
the signal is projected in real-time onto a basis of note tem-
plates learned off-line prior to the decomposition.

In this context, the price to pay for the simplicity of
the standard NMF is the overuse of templates to construct
the incoming signal, resulting in note insertions and sub-
stitutions such as octave and harmonic errors. In [6, 7],
the issue has been tackled with the standard Euclidean cost
by introduction of a sparsity constraint similar to [14]. We
here investigate the use of more complex costs by using the
β-divergence. This is in contrast to previous systems for
real-time audio decomposition which have either consid-
ered the Euclidean distance or the Kullback-Leibler diver-
gence. NMF with the β-divergence has recently proved its
relevancy for off-line applications in speech analysis [18],
music analysis [11] and music transcription [3, 23]. We
adapt these approaches to a real-time setup and propose
a tailored multiplicative update to compute the decompo-
sition. We also give intuition in understanding how the
β-divergence helps to improve transcription. The provided
evaluation show that the proposed system can outperform
several off-line algorithms at the state-of-the-art.

The paper is organized as follows. In Section 2, we
introduce the related background on NMF techniques. In
Section 3, we focus on NMF with the β-divergence, pro-
vide a multiplicative update tailored to real-time decompo-
sition, and discuss the relevancy of the β-divergence for the
decomposition of polyphonic music signals. In Section 4,
we depict the general architecture of the real-time system
proposed for polyphonic music transcription, and detail the
two modules respectively used for off-line learning of note
templates and for on-line decomposition of music signals.
In Section 5, we perform evaluations of the system for the
specific task of piano music transcription.

In the sequel, uppercase bold letters denote matrices,
lowercase bold letters denote column vectors, lowercase
plain letters denote scalars. R+ and R++ denote respec-
tively the sets of non-negative and of positive scalars. The
element-wise multiplication and division between two ma-
trices A and B are denoted respectively by A⊗B and A

B .
The element-wise power p of A is denoted by A.p.

1 http://imtr.ircam.fr/imtr/Realtime_Transcription
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2. RELATED BACKGROUND

This section introduces the NMF model, the standard NMF
problem, and the popular multiplicative updates algorithm
used to solve it. We then present the relevant literature in
sound recognition with NMF.

2.1 NMF model

The NMF model is a low-rank approximation for unsu-
pervised multivariate data analysis. Given an n ×m non-
negative matrix V and a positive integer r < min(n,m),
NMF tries to factorize V into an n×r non-negative matrix
W and an r ×m non-negative matrix H such that:

V ≈WH (1)

In this model, the multivariate data are stacked into V,
whose columns represent the different observations, and
whose rows represent the different variables. Each column
vj of V can be expressed as vj ≈ Whj =

∑
i hijwi,

where wi and hj are respectively the i-th column of W
and the j-th column of H. The columns of W then form
a basis and each column of H is the decomposition of the
corresponding column of V into this basis.

2.2 Standard problem and multiplicative updates

The standard NMF model of Equation 1 provides an ap-
proximate factorization WH of V. The aim is then to
find the factorization which optimizes a given goodness-
of-fit measure called cost function. In the standard for-
mulation, the Euclidean distance is used, and the NMF
problem amounts to minimizing the following cost func-
tion subject to non-negativity of both W and H:

1
2
‖V −WH‖2F =

1
2

∑
j

‖vj −Whj‖22 (2)

For this particular cost function, factors W and H can
be computed with the popular multiplicative updates intro-
duced in [16]. These updates are derived from a gradient
descent scheme with judiciously chosen steps, as follows:

H← H⊗ WTV
WTWH

W←W ⊗ VHT

WHHT
(3)

The updates are applied in turn until convergence, and en-
sure both non-negativity and decreasing of the cost, but not
necessarily local optimality of factors W and H.

A flourishing literature exists about extensions to the
standard NMF problem and their algorithms [5]. These ex-
tensions can be thought of in terms of modified cost func-
tions (e.g. using divergences or adding penalty terms), of
modified constraints (e.g. imposing sparsity), and of mod-
ified models (e.g. using tensors). For example, the cost
function defined in Equation 2 is often replaced with the
Kullback-Leibler divergence for which specific multiplica-
tive updates have been derived [16].

2.3 Applications in sound recognition

NMF algorithms have been applied to various problems in
vision, sound analysis, biomedical data analysis and text
classification among others [5]. In the context of sound
analysis, the matrix V is in general a time-frequency rep-
resentation of the sound to analyze. The rows and columns
represent respectively different frequency bins and succes-
sive time-frames. The factorization vj ≈

∑
i hijwi can

then be interpreted as follows: each basis vector wi con-
tains a spectral template, and the decomposition coeffi-
cients hij represent the activations of the i-th template wi

at the j-th time-frame.
NMF has already been used in the context of polyphonic

music transcription (e.g. see [1, 22]). Several problem-
dependent extensions have been developed to this end such
as a source-filter model [24], an harmonic constraint [20],
an harmonic model with temporal smoothness [3], or an
harmonic model with spectral smoothness [23]. These ap-
proaches rely in general on the off-line nature of NMF, but
some authors have used NMF in an on-line setup.

A real-time system to identify the presence and deter-
mine the pitch of one or more voices is proposed in [21].
This system is also adapted for sight-reading evaluation of
solo instrument in [4]. Concerning automatic transcrip-
tion, a similar system is used in [17] for transcription of
polyphonic music, and in [19] for drum transcription. A
real-time system for polyphonic music transcription with
sparsity considerations is proposed in [6]. The approach
is further developed in [7] for real-time coupled multiple-
pitch and multiple-instrument recognition. Yet, all these
approaches are based on NMF with the Euclidean distance
or the Kullback-Leibler divergence. We discuss the use of
the more general β-divergence as a cost function and its
relevancy for decomposition of music signals in Section 3.

3. NON-NEGATIVE DECOMPOSITION WITH
THE BETA-DIVERGENCE

In this section, we define the β-divergence, give some of its
properties, and review its use as a cost function for NMF.
We finally formulate the non-negative decomposition prob-
lem with the β-divergence and give multiplicative updates
tailored to real-time for solving it.

3.1 Definition and properties of the beta-divergence

The β-divergences form a parametric family of distortion
functions [9]. For any β ∈ R and any points x, y ∈ R++,
the β-divergence from x to y is defined as follows:

dβ(x|y) =
1

β(β − 1)
(
xβ + (β − 1)yβ − βxyβ−1

)
(4)

As special cases when β = 0 and β = 1, taking the limits
in the above definition leads respectively to the well-known
Itakura-Saito and Kullback-Leibler divergences:

dβ=0(x|y) = dIS(x|y) =
x

y
− log

x

y
− 1 (5)

dβ=1(x|y) = dKL(x|y) = x log
x

y
+ y − x (6)
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For β = 2, the β-divergence specializes to the widely used
half squared Euclidean distance:

dβ=2(x|y) = dE(x|y) =
1
2
(x− y)2 (7)

Concerning their properties, all β-divergences are non-
negative and vanish iff x = y. However, they are not nec-
essary distances in the strict terms since they are not sym-
metric and do not satisfy the triangle inequality in general.
A property of the β-divergences relevant to the present
work is that for any scaling factor λ ∈ R++ we have:

dβ(λx|λy) = λβdβ(x|y) (8)

We discuss further the interest of this scaling property for
decomposition of polyphonic music signals in Section 3.3.

3.2 NMF and the beta-divergence

The β-divergence was first used with NMF to interpolate
between the Euclidean distance and the Kullback-Leibler
divergence [15]. Starting with the scalar divergence in
Equation 4, a matrix divergence can be constructed as a
separable divergence, i.e. by summing the element-wise
divergences. The NMF problem with the β-divergence
then amounts to minimizing the following cost function
subject to non-negativity of both W and H:

Dβ(V|WH) =
∑
i, j

dβ(vij | [WH]ij) (9)

For β = 2, this cost function specializes to the cost defined
in Equation 2 for standard NMF.

As for standard NMF, several algorithms including mul-
tiplicative updates have been derived for NMF with the
β-divergence and its extensions [5, 15]. The β-divergence
has also proved its relevancy as a cost function for audio
off-line applications in speech analysis [18], music analy-
sis [11] and music transcription [3, 23].

3.3 Problem formulation and multiplicative update

We now formulate the problem of non-negative decompo-
sition with the β-divergence. We assume that W is a fixed
dictionary of note templates onto which we seek to decom-
pose the incoming signal v as v ≈ Wh. The problem is
therefore equivalent to minimizing the following cost func-
tion subject to non-negativity of h:

Dβ(v|Wh) =
∑
i

dβ(vi | [Wh]i) (10)

To solve this problem, we update h iteratively by using
a vector version of the corresponding multiplicative update
proposed in the literature [5, 15]. As W is fixed, we never
apply its respective update. The algorithm thus amounts to
repeating the following update until convergence:

h← h⊗
WT

(
(Wh).β−2 ⊗ v

)
WT (Wh).β−1

(11)

This scheme ensures non-negativity of h, but not neces-
sarily local optimality. Unfortunately, no proof has been

found yet to show that the cost function is non-increasing
under this update for a general parameter β, even if it has
been observed in practice [11]. However, even if such theo-
retical issues need to be investigated further, the simplicity
of this scheme makes it suitable for real-time applications
and gives good results in practice.

Concerning implementation, we can take advantage of
W being fixed to employ a multiplicative update tailored
to real-time decomposition. Indeed, after some matrix ma-
nipulations, we can rewrite the updates as follows:

h← h⊗
(
W ⊗ (veT )

)T (Wh).β−2

WT (Wh).β−1
(12)

where e is a vector full of ones. This helps to reduce
the computational cost of the update scheme as the matrix(
W ⊗ (veT )

)T
needs only to be computed once.

The scaling property in Equation 8 may give an insight
in understanding the relevancy of the β-divergence in our
context. For β = 0, the Itakura-Saito divergence is the
only β-divergence to be scale-invariant as it was remarked
in [11]. This means that the corresponding NMF problem
gives the same relative weight to all coefficients, and thus
penalizes equally a bad fit of factorization for small and
large coefficients. Considering music signals, this amounts
to giving the same importance to high-energy and to low-
energy frequency components. When β > 0, more em-
phasis is put on the frequency components of higher en-
ergy, and the emphasis augments with β. When β < 0,
the effect is the converse. In our context of music decom-
position, we try to reconstruct an incoming music signal
by addition of note templates. In order to avoid common
octave and harmonic errors, a good reconstruction would
have to find a compromise between focusing on the funda-
mental frequency, the first partials and higher partials. The
parameter β can thus help to control this trade-off.

4. GENERAL ARCHITECTURE OF THE SYSTEM

In this section, we present the real-time system proposed
for polyphonic music transcription. The general architec-
ture is shown schematically in Figure 1. The right side of
the figure represents the music signal arriving in real-time,
and its decomposition onto notes whose descriptions are
provided a priori to the system as templates. These tem-
plates are learned off-line, as shown on the left side of the
figure, and constitute the dictionary used during real-time
decomposition. We describe the two modules hereafter.

4.1 Note template learning

The learning module aims at building a dictionary W of
note templates onto which the polyphonic music signal is
projected during the real-time decomposition phase.

In the present work, we use a simple rank-one NMF
with the standard cost function as a learning scheme. We
suppose that the user has access to isolated note samples of
the instruments to transcribe, from which the system learns
characteristic templates. The whole note sample k is first
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Isolated note samples Musical scene

Non-negative matrix factorization
V(k) ≈ w(k)h(k)

Non-negative decomposition
vj ≈Whj

Note templates Note activations

V(k)

hj

vj

W

w(k)

Short-time sound representation Short-time sound representation

Note template learning (off-line) Music signal decomposition (on-line)

Figure 1. Schematic view of the general architecture.

processed in a short-time sound representation supposed to
be non-negative and approximatively additive (e.g. a short-
time magnitude spectrum). The representations are stacked
in a matrix V(k) where each column v(k)

j is the sound rep-
resentation of the j-th time-frame. We then solve standard
NMF with V(k) and a rank of factorization r = 1, us-
ing the multiplicative updates in Equation 3. This learning
scheme simply gives a template w(k) for each note sample
(the information in the row vector h(k) is discarded).

4.2 Music signal decomposition

Having learned the templates, we stack them in columns
to form the dictionary W. The problem of real-time tran-
scription then amounts to projecting the incoming music
signal vj onto W, where vj share the same representa-
tional front-end as the note templates. The problem is thus
equivalent to a non-negative decomposition vj ≈ Whj
where W is kept fixed and only hj is learned. The learned
vectors hj would then provide successive activations of the
different notes in the music signal. Following the discus-
sion in Section 3, we learn the vectors hj by employing
the β-divergence as a cost function and the multiplicative
update tailored to real-time decomposition in Equation 11.

As such, the system reports only a frame-level activity
of the notes. Some post-processing is thus needed to ex-
tract more information about the eventual presence of the
notes, and provide a symbolic representation of the music
signal for transcription. This post-processing potentially
includes activation thresholding, onset detection, temporal
modeling, etc. It is however not thoroughly discussed in
this paper where we use a simple threshold-based detec-
tion followed by a minimum duration pruning.

5. EVALUATION AND RESULTS

In this section, we evaluate the system on polyphonic tran-
scription of piano music. We provide a subjective evalu-
ation with musical excerpts synthesized from MIDI refer-
ences. We also perform an objective evaluation with a real
piano music database and standard evaluation metrics.

5.1 Subjective evaluation

As sample examples, we transcribed two musical excerpts
synthesized from MIDI references with real piano samples
from the Real World Computing (RWC) database [12].

For the non-negative decomposition, β was set to 0.5
since this value was shown optimal for music transcrip-
tion in [23] and provided good results in our tests. The
threshold for detection was set to 2 and no minimum du-
ration pruning was applied. For the dictionary, one note
template was learned and max-normalized for each of the
88 notes of the piano using corresponding samples taken
from RWC. We used a simple short-time magnitude spec-
trum representation, with a frame size of 50 ms leading
to 630 samples at a sampling rate of 12600 Hz, and com-
puted with a zero-padded Fourier transform of 1024 bins.
The frames were windowed with a Hamming function, and
the hopsize was set to 25 ms for template learning and re-
fined to 10 ms for decomposition. The decomposition was
computed in real-time simulation under MATLAB on a
2.40 GHz laptop with 4.00 Go of RAM, and was about
three times faster than real-time.

The results of the decomposition are shown in Figure 2.
Figures 2(a) and 2(b) depict the piano-roll representations
of the two piano excerpts. The ground-truth references
are represented with rectangles and the transcriptions with
black dots. Overall, this shows that the system is able
to match reliably the note templates to the music signals.
During note attacks, more templates are used due to tran-
sients but some post-processing such as minimum duration
pruning would help to remove these errors. We also remark
a tendency to shorten sustained notes which may be due to
a different spectral content during note releases.

5.2 Objective evaluation

For a more rigorous evaluation, we considered the stan-
dards of the Music Information Retrieval Evaluation eX-
change (MIREX) [2] and focused on two subtasks: (1) a
frame-level estimation of the present events in terms of
musical pitch, and (2) a note-level tracking of the present
notes in terms of musical pitch, onset and offset times.

For the evaluation dataset, we chose the MIDI-Aligned
Piano Sounds (MAPS) database [10]. MAPS contains real
recordings of piano pieces with ground-truth references.
We selected 25 pieces and truncated each of them to 30 s.

Concerning parameters, β was set to 0.5. The thresh-
olds for detection were set empirically to 1 and 2 for the
frame and note levels respectively. The minimum dura-
tion for pruning was set to 50 ms. The templates were
learned from MAPS with the same representation front-
end as above. This algorithm is referenced by BND.

In addition, we tested the system with the standard Eu-
clidean decomposition algorithm referenced by END, and
with the sparse algorithm of [14] with projection onto the
cone of sparsity s = 0.9. For these two algorithms, the
detection thresholds were set to 2 and 4 for the frame and
note levels respectively. To compare results, we also per-
formed the evaluation for two off-line systems at the state-
of-the-art: one based on NMF but with an harmonic model
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(a) 1st movement, Pavane de la Belle au bois dormant.
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(b) 4th movement, Les entretiens de la Belle et de la Bête.

Figure 2. Transcription of two piano excerpts from Ma
mère l’Oye, Cinq pièces enfantines pour piano à quatre
mains (1908-1910), Maurice Ravel (1875-1937).

and spectral smoothness [23], and another one based on
a sinusoidal analysis with a candidate selection exploiting
spectral features [25].

We report the evaluation results per algorithm in Ta-
bles 1 and 2 at the frame and note levels respectively. Stan-
dard evaluation metrics from the MIREX are used as de-
scribed in [2]: precision P , recall R, F -measure F , ac-
curacy A, total error Etot, substitution error Esubs, missed
error Emiss, false alarm error Efa, mean overlap ratioM.
At the note level, the subscripts 1 and 2 represent respec-
tively the onset-based and the onset/offset-based results.

Overall, the results show that the proposed real-time
system performs comparably to the state-of-the-art off-line
algorithms of [23,25]. Using the β-divergence, the system
BND even outperforms the other algorithms. The sparse
algorithm of [14] reduces insertions and substitutions, but
augments the number of missed notes so that it actually
does not perform better than the standard scheme END.
The standard Euclidean cost also shows its limits for tran-
scription where more complex costs with the β-divergence
give better results. We finally remark that the mean over-
lap ratio scores corroborate the observation that sustained
notes tend to be shortened.

Alg. P R F A Etot Esubs Emiss Efa

BND 63.9 67.3 65.5 48.7 58.9 11.9 20.8 26.2

END 55.3 58.6 56.9 39.8 71.4 17.3 24.1 29.9
[14] 58.5 55.2 56.8 39.7 67.1 16.8 28.0 22.3

[23] 61.0 66.7 63.7 46.8 65.6 10.4 22.9 32.3
[25] 60.0 70.8 65.0 48.1 60.0 16.3 12.8 30.8

Table 1. Frame-level transcription results per algorithm.

Alg. P1 R1 F1 A1 M1 P2 R2 F2 A2

BND 75.5 67.1 71.1 55.1 56.7 30.0 26.6 28.2 16.4

END 57.9 58.2 58.1 40.9 53.9 21.4 21.6 21.5 12.0
[14] 57.2 56.3 56.8 39.6 54.1 21.0 20.7 20.8 11.6

[23] 58.1 73.7 65.0 48.1 57.7 20.7 26.3 23.2 13.1
[25] 33.0 58.8 42.3 26.8 55.1 11.6 20.7 14.9 8.0

Table 2. Note-level transcription results per algorithm.

6. CONCLUSION

This paper addressed the problem of real-time polyphonic
music transcription by employing NMF techniques. We
discussed the use of the β-divergence as a cost function
for non-negative decomposition tailored to real-time tran-
scription. The obtained results show that the proposed
system can outperform state-of-the-art off-line approaches,
and are encouraging for further development.

A problem in our approach is that templates are inher-
ently considered as stationary. One way to tackle this is
to consider representations that capture variability over a
short time-span as in [7]. We could also combine NMF
with a state representation and use templates for each state.

The template learning method can be further improved
by using extended NMF problems and algorithms to learn
one or more templates for each note. Such issues have not
been developed but interesting perspectives include learn-
ing sparse or harmonic templates. Using the β-divergence
during template learning in our experience did not improve
the results. Further considerations are needed on this line.

In a live performance setup such as ours, the templates
can be directly learned from the corresponding instrument.
Yet in other setups, the issue of generalization must be
carefully considered and will be discussed in future work.
We think of considering adaptive templates by adapting an
approach proposed in [13] to real-time decomposition.

We would like also to improve the robustness against
noise, by keeping information from the activations during
template learning, or by using noise templates as in [7].
In addition, we want to develop more elaborate sparsity
controls than in [6, 7, 14]. In our approach, sparsity is
controlled implicitly during decomposition. Yet in some
applications, specially for complex problems such as audi-
tory scene analysis, controlling explicitly sparsity becomes
crucial. A forthcoming paper will address this issue.

Last but not least, the proposed system is currently un-
der development for the Max/MSP real-time computer mu-
sic environment and will be soon available for free down-
load on the companion website.
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