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Part I: General principles of music source separation
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Source separation and music

Audio source separation

Many sound scenes are mixtures of several concurrent sound sources.

When facing such scenes, humans are able to perceive and focus on
individual sources.

Source separation is the problem of recovering the source signals
underlying a given mixture.

It is a core problem of audio signal processing, with applications such as:

hearing aids,

post-production, remixing and 3D upmixing,

spoken/multimedia document retrieval,

MIR.
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Source separation and music

The data at hand
As an inverse problem, source separation requires some knowledge.

Music is among the most difficult application areas of source separation
because of the wide variety of sources and mixing processes.
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Source separation and music

Music sources

Music sources include acoustical or virtual instruments and singing voice.

Sound is produced by transmission of one or more excitation
movements/signals through a resonant body/filter.

This results in a wide variety of sounds characterized by their:

polyphony (monophonic or polyphonic)

temporal shape (transitory, constant or variable)

spectral fine structure (random or pitched)

spectral envelope
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Source separation and music

Effects of microphone recording

For point sources, room acoustics result in filtering of the source signal

where the intensity and delay of direct sound are functions of the source
position relative to the microphone.

Diffuse sources (piano, drums) amount to (infinitely) many point sources.

The mixture signal is equal to the sum of the contributions of all sources
at each microphone.
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Source separation and music

Software mixing effects

Usual software mixing effects include:

compression and equalization

panning, i.e. channel-dependent intensity scaling

reverb

polarity and autopan

The latter are widely employed to achieve perceptual envelopment,
whereby even point sources are mixed diffusely.

Again, the intensity of direct sound is a function of the source position and
the mixture signal is equal to the sum of the contributions of all sources in
each channel.
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Source separation and music

Overview

Hundreds of source separation systems were designed in the last 20
years. . .

. . . but few are yet applicable to real-world music, as illustrated by the
2008 and 2010 Signal Separation Evaluation Campaigns (SiSEC).

The wide variety of techniques boils down to three modeling paradigms:

computational auditory scene analysis (CASA),

probabilistic linear modeling, including independent component
analysis (ICA) and sparse component analysis (SCA),

probabilistic variance modeling, including hidden Markov models
(HMM) and nonnegative matrix factorization (NMF).
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Computational auditory scene analysis

Computational auditory scene analysis (CASA)

CASA aims to emulate the human auditory system.

Source formation relies on the Gestalt rules of cognition:

proximity,

similarity,

continuity,

closure,

common fate.
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Computational auditory scene analysis

Auditory front-end
The sound signal is first converted into an auditory nerve representation
via a series of processing steps:

outer- and middle-ear: filter
cochlear traveling wave model: filterbank
haircell model: halfwave rectification + bandwise compression +
cross-band suppression

Piano and violin mixture
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Computational auditory scene analysis

Sinusoidal+noise decomposition

Many systems further decompose the signal into a collection of sinusoidal
tracks plus residual noise.

This decomposition is useful to

reduce the number of sound atoms to be grouped into sources,

enable the exploitation of advanced cues, e.g. amplitude and
frequency modulation.

Sinusoidal representation
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Computational auditory scene analysis

Spatial cues
Spatial proximity is assessed by comparing the observed

interchannel time difference (ITD),

interchannel intensity difference (IID).

ITD (anechoic)
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Note: in practice, most systems consider only binaural data, i.e. recorded
by in-ear microphones.
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Computational auditory scene analysis

Spectral cues

The Gestalt rules also translate into e.g.

common pitch and onset time,

similar spectral envelope,

spectral and temporal smoothness,

lack of silent time intervals,

correlated amplitude and frequency modulation.

Most effort has been devoted to the estimation of pitch by
cross-correlation of the auditory nerve representation in each band.

Correlogram (n = 0 s)
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Computational auditory scene analysis

Learned cues

In addition to the above primitive cues, the auditory system relies on a
range of learned cues to focus on a given source:

veridical expectation (episodic memory): ”I know the lyrics”

schematic expectation (semantic memory): ”The inaudible word after
love you must be babe”

dynamic adaptive expectation (short-term memory): ”This melody
already occurred in the song”

conscious expectation
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Computational auditory scene analysis

Source formation and signal extraction

Each time-frequency bin or each sinusoidal track is associated to a single
source according to the above cues: this is known as binary masking.

Individual cues are ambiguous, e.g.

the observed IID/ITD may be due to a single source in the associated
direction or to several concurrent sources around that direction,

a given sinusoidal track may be a harmonic of different sources.

Most systems exploit several cues with some precedence order or weighting
factors determined by psycho-acousticians.

Piano mask
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Computational auditory scene analysis

Summary of CASA

Advantages:

wide range of spectral, spatial and learned cues

robustness thanks to joint exploitation of several cues

Limitations:

musical noise artifacts due to binary masking

suboptimal cues, designed for auditory scene analysis instead of
machine source separation

practical limitation to a few spectral and/or spatial cues, with no
general framework for the integration of additional cues

(historically) bottom-up approach, prone to error propagation, and
limitation to pitched sources

no results within recent evaluation campaigns
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Probabilistic linear modeling

Model-based audio source separation

The alternative top-down approach consists of finding the source signals
that best fit the mixture and the expected properties of audio sources.

In a probabilistic framework, this translates into

building generative models of the source and mixture signals,

inferring latent variables in a maximum a posteriori (MAP) sense.
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Probabilistic linear modeling

Linear modeling

The established linear modeling paradigm relies on two assumptions:
1 point sources
2 low reverberation

Under assumption 1, the sources and the mixing process can be modeled
as single-channel source signals and a linear filtering process.

Under assumption 2, this filtering process is equivalent to complex-valued
multiplication in the time-frequency domain via the short-time Fourier
transform (STFT).

In each time-frequency bin (n, f )

Xnf =
J∑

j=1

Sjnf Ajf

Xnf : vector of mixture STFT coeff.
J: number of sources
Sjnf : jth source STFT coeff.
Ajf : jth mixing vector
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Probabilistic linear modeling

Priors over the mixing vectors

The mixing vectors Ajf encode the apparent sound direction in terms of

ITD τjf ,
IID gjf .

For non-echoic mixtures, ITDs and IIDs are constant over frequency and
related to the direction of arrival (DOA) θj of each source

Ajf ∝

(
1

gje
−2iπf τj

)
For echoic mixtures, ITDs and IIDs follow a smeared distribution P(Ajf |θj)
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Probabilistic linear modeling

I.i.d. priors over the source STFT coefficients

Most systems assume that the sources have random spectra, i.e. their
STFT coefficients Sjnf are independent and identically distributed (i.i.d.).

The magnitude STFT coefficients of audio sources are sparse: at each
frequency, few coefficients have large values while most are close to zero.

This property is well modeled by the generalized exponential distribution

P(|Sjnf ||p, βf ) =
p

βf Γ(1/p)
e
−

˛
˛
˛
Sjnf
βf

˛
˛
˛
p

p: shape parameter
βj : scale parameter

Speech source S
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Note: coarser binary activity priors have also been employed.
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Probabilistic linear modeling

Inference algorithms

Given the above priors, source separation is typically achieved by joint
MAP estimation of the source STFT coefficients Sjnf and other latent
variables (Ajf , gj , τj , p, βj) via alternating nonlinear optimization.

This objective is called sparse component analysis (SCA).

For typical values of p, the MAP source STFT coefficients are nonzero for
at most two sources in a stereo setting.

When the number of sources is J = 2, SCA is renamed nongaussianity-
based frequency-domain independent component analysis (FDICA).
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Probabilistic linear modeling

Practical illustration of separation using i.i.d. linear priors
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Time-frequency bins dominated by the center source are often erroneously
associated with the two other sources.
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Probabilistic linear modeling

SiSEC results on toy mixtures of 3 sources
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Probabilistic linear modeling

Summary of probabilistic linear modeling

Advantages:

top-down approach

separation of more than one source per time-frequency bin

Limitations:

restricted to mixtures of non-reverberated point sources

separation of at most two sources per time-frequency bin

musical noise artifacts due to the ambiguities of spatial cues

no straightforward framework for the integration of spectral cues
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Probabilistic variance modeling

Idea 1: from sources to mixture components

Diffuse or semi-diffuse sources cannot be modeled as single-channel signals
and not even as finite dimensional signals.

Instead of considering the signal produced by each source, one may
consider its contribution to each channel of the mixture signal.

Source separation becomes the problem of estimating the multichannel
mixture components underlying the mixture.

In each time-frequency bin (n, f )

Xnf =
J∑

j=1

Cjnf

Xnf : vector of mixture STFT coeff.
J: number of sources
Cjnf : jth mixture component
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Probabilistic variance modeling

Idea 2: translation and phase invariance

In order to overcome the ambiguities of spatial cues, additional spectral
cues are needed as shown by CASA.

Most audio sources are translation- and phase-invariant: a given sound
may be produced at any time with any relative phase across frequency.
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Probabilistic variance modeling

Variance modeling

Variance modeling combines these two ideas by modeling the STFT
coefficients of individual mixture components by a circular multivariate
distribution whose parameters vary over time and frequency.

The non-sparsity of source STFT coefficients over small time-frequency
regions suggests the use of a non-sparse distribution.
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Probabilistic variance modeling

Choice of the distribution

For historical reasons, several distributions have been preferred in a mono
context, which can equivalently be expressed as divergence functions over
the source magnitude/power STFT coefficients:

Poisson ↔ Kullback-Leibler divergence aka I-divergence

tied-variance Gaussian ↔ Euclidean distance

log-Gaussian ↔ weighted log-Euclidean distance

These distributions do not easily generalize to multichannel data.
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Probabilistic variance modeling

The multichannel Gaussian model

The zero-mean Gaussian distribution is a simple multichannel model.

P(Cjnf |Σjnf ) =
1

det(πΣjnf )
e
−CH

jnf
Σ

−1
jnf

Cjnf Σjnf : jth component
covariance matrix

The covariance matrix Σjnf of each mixture component can be factored as
the product of a scalar nonnegative variance Vjnf and a mixing covariance
matrix Rjf respectively modeling spectral and spatial properties

Σjnf = Vjnf Rjf

Under this model, the mixture STFT coefficients also follow a Gaussian
distribution whose covariance is the sum of the component covariances

P(Xnf |Vjnf ,Rjf ) =
1

det
(
π

∑J
j=1 Vjnf Rjf

)e−XH
nf (

PJ
j=1 Vjnf Rjf )

−1
Xnf
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Probabilistic variance modeling

General inference algorithm

Independently of the priors over Vjnf and Rjf , source separation is typically
achieved in two steps:

joint MAP estimation of all model parameters using the expectation
maximization (EM) algorithm,

MAP estimation of the source STFT coefficients conditional to the
model parameters by multichannel Wiener filtering

Ĉjnf = Vjnf Rjf

⎛⎝ J∑
j ′=1

Vj ′nf Rj ′f

⎞⎠−1

Xnf .
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Probabilistic variance modeling

Rank-1 priors over the mixing covariances

The mixing covariances Rjf encode the apparent spatial direction and
spatial spread of sound in terms of

ITD,

IID,

normalized interchannel correlation a.k.a. interchannel coherence.

For non-reverberated point sources, the interchannel coherence is equal to
one, i.e. Rjf has rank 1

Rjf = Ajf A
H
jf

The priors P(Ajf |θj) used with linear modeling can then be simply reused.
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Probabilistic variance modeling

Full-rank priors over the mixing covariances

For reverberated or diffuse sources, the interchannel coherence is smaller
than one, i.e. Rjf has full rank.

The theory of statistical room acoustics suggests the direct+diffuse model

Rjf ∝ λjAjf A
H
jf + Bf

λj : direct-to-reverberant ratio
Ajf : direct mixing vector
Bf : diffuse noise covariance

with

Ajf =

√
2

1 + g2
j

(
1

gje
−2iπf τj

)
τj : ITD of direct sound
gj : IID of direct sound

Bf =

(
1 sinc(2πfd/c)

sinc(2πfd/c) 1

)
d : microphone spacing
c : sound speed
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Probabilistic variance modeling

I.i.d. priors over the source variances

Baseline systems rely again on the assumption that the sources have
random spectra and model the source variances Vjnf as i.i.d. and locally
constant within small time-frequency regions.

When these follow a mildly sparse prior, it can be shown that the MAP
variances are nonzero for up to four sources.

Discrete priors constraining the number of nonzero variances to one or two
have also been employed.

When the number of sources is J = 2, this model is also called
nonstationarity-based FDICA.
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Probabilistic variance modeling

Benefit of exploiting interchannel coherence

Interchannel coherence helps resolving some ambiguities of ITD and IID
and identify the predominant sources more accurately.
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Probabilistic variance modeling

Practical illustration of separation using i.i.d. variance
priors
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Probabilistic variance modeling

Spectral priors based on template spectra

Variance modeling enables the design of phase-invariant spectral priors.

The Gaussian mixture model (GMM) represents the variance Vjnf of each
source at a given time by one of K template spectra wjkf indexed by a
discrete state qjn

Vjnf = wjqjnf with P(qjn = k) = πjk

Different strategies have been proposed to learn these spectra:

speaker-independent training on separate single-source data,

speaker-dependent training on separate single-source data,

MAP adaptation to the mixture using model selection or interpolation,

MAP inference from a coarse initial separation.
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Probabilistic variance modeling

Practical illustration of separation using template spectra
Piano source C

1nf

 

 

n (s)

f (
kH

z)

0 0.5 1
0

2

4

dB

0

20

40

60
Violin source C

2nf

 

 

n (s)

f (
kH

z)

0 0.5 1
0

2

4

dB

0

20

40

60
Mixture X

nf

 

 

n (s)

f (
kH

z)

0 0.5 1
0

2

4

dB

0

20

40

60

Template spectra w
jkf

 

 

f (
kH

z)

k (piano) k (violin)
1 2 3 1 2 3

0

2

4

dB

20

40

60

Estimated state sequences q
jn

 

 

n (s)

pi
an

o
vi

ol
in

0 0.5 1

1
2
3
1
2
3

Estimated piano variance Σ
1nf

 

 

n (s)

f (
kH

z)

0 0.5 1
0

2

4

dB

20

40

60
Estimated violin variance Σ

2nf

 

 

n (s)

f (
kH

z)

0 0.5 1
0

2

4

dB

20

40

60
Estimated mixture variance Σ

1nf
+Σ

2nf

 

 

n (s)

f (
kH

z)

0 0.5 1
0

2

4

dB

20

40

60

Estimated piano source C
1nf

 

 

n (s)

f (
kH

z)

^

0 0.5 1
0

2

4

dB

0

20

40

60
Estimated violin source C

2nf

 

 

n (s)

f (
kH

z)

^

0 0.5 1
0

2

4

dB

0

20

40

60

E. Vincent & N. Ono (INRIA & UTokyo) Music Source Separation ISMIR 2010 41 / 54

Probabilistic variance modeling

Spectral priors based on basis spectra

The GMM does not efficiently model polyphonic musical instruments.

The variance Vjnf of each source is then better represented as the linear
combination of K basis spectra wjkf multiplied by time-varying scale
factors hjkn

Vjnf =
K∑

k=1

hjknwjkf

This model is also called nonnegative matrix factorization (NMF).

Again, a range of strategies have been used to learn these spectra:

instrument-dependent training on separate single-source data,

MAP adaptation to the mixture using uniform priors,

MAP adaptation to the mixture using trained priors.
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Probabilistic variance modeling

Practical illustration of separation using basis spectra
Piano source C

1nf

 

 

n (s)

f (
kH

z)

0 0.5 1
0

2

4

dB

0

20

40

60
Violin source C

2nf

 

 

n (s)

f (
kH

z)

0 0.5 1
0

2

4

dB

0

20

40

Mixture X
nf

 

 

n (s)

f (
kH

z)

0 0.5 1
0

2

4

dB

0

20

40

60

Basis spectra w
jkf

 

 

f (
kH

z)

k (piano) k (violin)
1 2 3 1 2 3

0

2

4

dB

−40

−20

0

Estimated scale factors h
jkn

 

 

n (s)

k 
(p

ia
no

)
k 

(v
io

lin
)

0 0.5 1

1
2
3
1
2
3

dB

40

60

80

Estimated piano variance Σ
1nf

 

 

n (s)

f (
kH

z)

0 0.5 1
0

2

4

dB

0

20

40

60
Estimated violin variance Σ

2nf

 

 

n (s)

f (
kH

z)

0 0.5 1
0

2

4

dB

0

20

40

60
Estimated mixture variance Σ

1nf
+Σ

2nf

 

 

n (s)

f (
kH

z)

0 0.5 1
0

2

4

dB

0

20

40

60

Estimated piano source C
1nf

 

 

n (s)

f (
kH

z)

^

0 0.5 1
0

2

4

dB

0

20

40

60
Estimated violin source C

2nf

 

 

n (s)

f (
kH

z)

^

0 0.5 1
0

2

4

dB

0

20

40

60

E. Vincent & N. Ono (INRIA & UTokyo) Music Source Separation ISMIR 2010 43 / 54

Probabilistic variance modeling

Constrained template/basis spectra

MAP adaptation or inference of the template/basis spectra is often needed
due to

the lack of training data,

the mismatch between training and test data.

However, it is often inaccurate: additional constraints over the spectra are
needed to further reduce overfitting.
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Probabilistic variance modeling

Harmonicity and spectral smoothness constraints

For instance, harmonicity and spectral smoothness can be enforced by

associating each basis spectrum with some a priori pitch p

modeling wjpf as the sum of fixed narrowband spectra bplf

representing adjacent partials at harmonic frequencies scaled by
spectral envelope coefficients ejpl

wjpf =

Lp∑
l=1

ejplbplf .

Parameter estimation now amounts to estimating the active pitches and
their spectral envelopes instead of their full spectra.
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Probabilistic variance modeling

Practical illustration of harmonicity constraints
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Probabilistic variance modeling

Further constraints
Further constraints that have been implemented in this context include

source-filter model of instrumental timbre,

inharmonicity and tuning.

Probabilistic priors are also popular:

state transition priors

P(qjn = k |qj ,n−1 = l) = πjkl

spectral continuity priors (for percussive sounds)

P(Vjnf |Vjn,f −1) = N (Vjnf ; Vjn,f −1, σperc)

temporal continuity priors (for sustained sounds)

P(Vjnf |Vj ,n−1,f ) = N (Vjnf ; Vj ,n−1,f , σsust)
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Probabilistic variance modeling

SiSEC results on toy mixtures of 3 sources
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Probabilistic variance modeling

SiSEC results on professional mixtures
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Probabilistic variance modeling

Summary of probabilistic variance modeling

Advantages:

top-down approach

virtually applicable to any mixture, including to diffuse sources

no hard constraint on the number of sources per time-frequency bin

fewer musical noise artifacts by joint exploitation of spatial, spectral
and learned cues

principled modular framework for the integration of additional cues

Limitations:

remaining musical noise artifacts

current implementations limited to a few spectral and/or spatial
cues. . . but this is gradually changing!
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1 Source separation and music

2 Computational auditory scene analysis

3 Probabilistic linear modeling

4 Probabilistic variance modeling

5 Summary and future challenges
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Summary and future challenges

Summary principles of model-based source separation

Most model-based source separation systems rely on modeling the STFT
coefficients of each source as a function of

a scalar variable (Sjnf or Vjnf ) encoding spectral cues,

a vector or matrix variable (Ajf or Rjf ) encoding spatial cues.

Robust source separation requires priors over both types of cues:

spectral cues alone cannot discriminate sources with similar pitch
range and timbre,

spatial cues alone cannot discriminate sources with the same DOA.

A range of informative priors have been proposed, relating for example

Sjnf or Vjnf to discrete or continuous latent states,

Ajf or Rjf to the source DOAs.

Variance modeling outperforms linear modeling.
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Summary and future challenges

Conclusion and remaining challenges

To sum up, source separation is a core problem of audio signal processing
with huge potential applications.

Existing systems are gradually finding their way into the industry,
especially for applications that can accomodate

a certain amount of musical noise artifacts, such as MIR,

partial user input/feedback, such as post-production.

We believe that these two limitations could be addressed in the next 10
years by exploiting the full power of probabilistic modeling, especially by:

integrating more and more spatial and spectral cues,

making a better use of learned cues, using training data or repeated
sounds
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Summary and future challenges
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Introduction
� Focus of the second half of this tutorial 

is to clarify
� What source separation has been used for MIR?
� How does it improve performance of MIR tasks?

� Examples:
� Multi pitch estimation

Task itself is tightly coupled with source 
separation.

� Audio genre classification
How source separation is useful? 
Not straightforward.
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Part I: Brief Introduction of 
State-of-the-arts
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Singer Identification
� Task: Identify a singer from music audio with 

accompaniment
� Typical approach

Feature
Extraction

audio features Classifier
singer
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Feature extraction

� Pre-dominant F0 based voice separation
Accompaniment Sound Reduction [Fujihara2005]

by PreFEST [Goto2004]

Audio input

Fig.1 [Fujihara2005]
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� Only reliable frame is used for classification

Reliable Frame Selection [Fujihara2005]

Fig.1 [Fujihara2005]

Feature extraction

Classifier
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Evaluation by Confusing Matrix

baseline reduction only

selection only reduction and selection

� Male/female
confusion is
decreased by 
accompaniment
reduction.

� Combination of 
reduction and 
selection much
improves
performance.

male female

Fig. 3 [Fujihara2005]
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Vocal Separation Based on Melody Transcriber
� Melody-F0-based Vocal Separation 

[Mesaros2007]
� Estimate melody-F0 by melody transcription 

system [Ryynanen2006].
� Generate harmonic overtones at multiple of 

estimated F0.
� Estimate amplitudes and phases of overtones 

based on cross correlation between original signal 
and complex exponentials.

� They evaluate the effect of separation in 
singer identification performance using by 
different classifiers.
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Evaluation by Identification Rate

Singing to Accompaniment Ratio: -5dB Singing to Accompaniment Ratio: 15dB
Generated by Table 1 and 2 [Mesaros2007]

Performance is much improved, especially 
in low singing-to-accompaniment ratio.
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Instrument Identification
� Task: Determine instruments present in music 

piece
� Typical approach

� Important Issue
� Source separation

is not perfect.
How to reduce errors?

Separation
to Notes

audio
spectrogram
of notes

Classifier
instrument

Feature
Extraction

features
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Feature Weighting [Kitahara2007]
� Feature vectors of each instrument are collected 

from polyphonic music for training.
� Robustness of each feature is evaluated by 

ratio of intra-class variance to inter-class variance:
Applying Linear discriminant analysis (LDA) for
feature weighting.

Modified from
Fig. 1 [Kitahara2007]

PCA LDA
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Effectiveness of Feature Weighting

Fig. 6 [Kitahara2007]

In
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Feature weighting by LDA improves recognition rate.
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Audio Tempo Estimation
� Task: Extract tempo from musical audio
� Typical approach:

STFT or
Filterbank

audio
subband
signals

detection
function

Onset
Detection

Periodicity
AnalysisTracking

tempo
tempo
candidates

t
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Applying Harmonic+Noise Model
� Harmonic+Noise model is applied 

before calculating detection function [Alonso2007]

Source separation based on 
harmonic + noise model

Detection functions are 
calculated from both of 
harmonic component
and noise component,
and then, they are merged.Fig. 2 [Alonso2007]
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Influence of S+N Model

Separation based on H+N model shows better results.

Algorithms of periodicity detection Fig. 14 [Alonso2007]
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Applying PLCA
� PLCA (Probabilistic

Latent Component
Analysis), NMF-like 
method is applied.

� It increases much
candidates of tempo.

� They report its 
effectiveness.

[Chordia2009]

Fig. 1 [Chordia2009]
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Part II: Harmonic/Percussive
Sound Separation
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Motivation and Goal of HPSS
� Motivation: Music consists of two different components

example of a popular music
(RWC-MDB-P034)

harmonic component percussive component

� Goal: Separation of a monaural audio signal 
into harmonic and percussive components

H-related
P-related

� Target: MIR-related tasks
� multi-pitch analysis, chord recognition…
� beat tracking, rhythm recognition…
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Related Works to H/P Separation
� Source separation into multiple components

followed by classification
� ICA and classification [Uhle2003]
� NMF and classification [Helen2005]

� Steady + Transient model
� Adaptive phase vocoder
� Subspace projection
� Matching persuit
…etc
Good review is provided in [Daudet2005]

� Baysian NMF [Dikmen2009]
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Point: Anisotropy of Spectrogram

harmonic component percussive component

horizontally
smooth

vertically
smooth
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H/P Separation Problem
� Problem:

Find Ht,� and Pt,� from Wt,� on power spectrogram

� Requirements:
1) Ht,� : horizontally smooth
2) Pt,� : vertically smooth
3) Ht,� and Pt,� : non-negative
4) Ht,� + Pt,� : should be close to Wt,�

Wt,� Ht,� Pt,�
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Formulation of H/P Separation (1/2)
� Formulation as an Optimization Problem:

�Objective function to minimize

�Under constraints:
�Ht,�� 0
�Pt,�� 0

Smoothness costCloseness cost

In MAP estimation context,
they are corresponding 
likelihood term and prior term,
respectively.
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� Closeness cost function: I-divergence

� Smoothness cost function: Square of difference

� A variance modeling-based separation using
� Poisson observation distribution
� Gaussian continuity priors

Weights to control two smoothness

for scale invariance

Formulation of H/P Separation (2/2)

[Miyamoto2008, Ono2008, etc]
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Update Rules
� Update alternatively two kinds of variables:

� H and P:

� Auxiliary variables:
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Separated Examples

Music piece original H P

RWC-MDB-P-7 “PROLOGUE ”

RWC-MDB-P-12 “KAGE-ROU ”

RWC-MDB-P-18 “True Heart”

RWC-MDB-P-25 “tell me”

RWC-MDB-J-16 “Jive ”
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Real-Time Implementation
� Sliding Block Analysis

Iterations are applied 
only within sliding block
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Open Software:  Real-time H/P equalizer

� Control H/P balance of 
audio signal in real time

� Simple instructions:
1) Click “Load WAV” button 

and choose a WAV-
formatted audio file.

2) Click “Start” button, and 
then, audio starts.

3) Slide H/P balance bar as 
you like and listen how 
the sound changes. 1)

2)

3)

Available at http://www.hil.t.u-tokyo.ac.jp/software/HPSS/
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Part III: Applications of 
HPSS to MIR Tasks

III-1: Audio Chord Detection
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Audio Chord Detection
� Task: Estimate chord sequence and its 

segmentation from music audio

�

�

� � � � � � � � � � �

����

����
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���

���


�
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� Feature: chroma [Fujishima1999]

� Chroma observation
probability

� Transition: chord progression
� Bigram probability

� Maximum a Posteriori Chord 
Estimation [Sheh2003]

� Viterbi algorithm for …

Typical Approach: Chroma Feature + HMM

emission transitionInitial prob.

)|( tt cxp

)|( 1�tt ccp

)|( tt cxp

)|( 1�tt ccp
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Feature-refined System [Ueda2009]

24 dim. features

HMM
training

Viterbi
decoding

Feature Extraction

Recognized chord 
sequence

acoustic model 
language model

HMM-based chord recognition

training         recognition
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Suppressing Percussive Sounds
� Percussive sounds are harmful in chord detection

Emphasize harmonic components
by HPSS
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� Covariance matrix of chroma
� Highly correlated components: 

diagonal-only approximation infeasible
� Caused by harmonic overtones or some 

pitches performed at the same time
� Results in large number of parameters

� Covariance matrix is near circulant
� Assuming …

� Harmonic overtones of all pitches have 
the same structure

� The amount of occurrence of the same 
intervals is the same

� Circulant matrix diagonalized by DFT
� Diagonal approximation of FT-

Chroma covariance
� Reduces the number of model 

parameters (statistically robust)

Fourier-transformed Chroma

FT-Chroma covariance

Chroma covariance
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Tuning Compensation
� Tuning difference among 

songs
� Neglecting this may blur 

chroma features
� Choose best tuning from

multiple candidates
� Find maximum chroma

energy (sum of all bins of 
chroma)

� Assume: tuning does not 
change within a song

A A#G# BG

filterbank

tuning (log freq.)

A A

C C C
D D

F F F
G G

E

BB

E

440.0Hz 446.4Hz
(+25cent)
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Delta Chroma Features
� Improve chord boundary accuracy

� by features representing chord boundaries

� Chord tones largely changes at chord boundary
� Delta chroma� derivative of chroma features
� Cf. Delta cepstrum (MFCC)�Effective features of speech recognition

� Calculated by regression analysis of � sample points
[Sagayama&Itakura1979]

� Robust to noise
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� Chroma changes from “onset” to “release”
� capture the change by having multiple states per chord
� tradeoff between data size and the number of states

Multiple States per Chord

G

C

F ���

D

C1 C2 C3

time

pi
tc

h
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� Test Data
� 180 songs (12 albums) of The Beatles (chord reference 

annotation provided by C. Harte)
� 11.025 kHz sampling, 16bit, 1ch, WAV file
� Frequency range: 55.0Hz-1661.2Hz (5 octaves)

� Labels
� 12�major/minor =24 chords + N (no chord)

� Evaluation
� Album filtered 3-fold cross validation

� 8 albums for training, 4 albums for testing
� Frame Recognition Rate

= (#correct frames) / (#total frames)
� Sampled every 100ms

Experimental Evaluation

Aug. 9, 2010 ISMIR2010 Tutorial 1DDLabNNUUOOSS 39

Chord Detection Results

HE�harmonic sound emphasized
TC: tuning compensation
FT:  FT chroma (diagonal covariance)
DC: Delta chroma

1 state 
sstatestate
�
2 states
3 states

Chroma HE HE+TC HE+TC+DC

MIREX2008
best score 
[Uchiyama2008]
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Err Reduc Rate
28.1%

Err Reduc Rate
11.0%

HE+TC+FT

HPSS improves chord 
detection performance
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Part III: Applications of 
HPSS to MIR Tasks

III-2: Melody Extraction



Aug. 9, 2010 ISMIR2010 Tutorial 1DDLabNNUUOOSS 41

Melody Extraction
� Task: Identify a melody pitch contour from 

polyphonic musical audio
� Typical approach:

�Singing voice enhancement will be 
useful pre-processing.

Pre-dominant
F0s extraction Tracking

audio melodyF0s
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Singing Voice in Spectrogram

A. Vertical component: Percussion
B. Horizontal component: Harmonic instrument 

(piano, guiter, etc..)
C. Fluctuated component: Singing voice

A

B
C

RWC-MDB-P-25 “tell me”
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Is voice harmonic or percussive?

� On short-frame STFT domain, voice appears as “H”
(time direction clustered).

� On long-frame STFT domain, voice appears as “P”
(frequency direction clustered).

“Harmonic” “Percussive”

Depends on spectrogram resolution (frame-length)
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HPSS results with different frame length

H P

Vocal

H P

Frame length: 16ms

Frame length: 512ms

Example
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Two-stage HPSS [Tachibana2010]

Original

Sinusoidal
Sound

Percussive
Sound

Stationary-
sinsoidal Sound

Fluctuating-
sinusoidal Sound 
(�singing voice)

HPSS with short frame

HPSS with long frame
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Spectrogram Example
Original signal (from LabROSA dataset)
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Spectrogram Example
Voice-enhanced signal (by two-stage HPSS)

Aug. 9, 2010 ISMIR2010 Tutorial 1DDLabNNUUOOSS 48

Separation Examples
title original Extracted

Vocal
Vocal 

Cancelled*
Genre

“tell me” F, R&B

“Weekend” F, Euro beat

“Dance Together” M, Jazz

“1999” M, Metal rock

“Seven little crows” F, Nursery rhyme

“La donna è mobile” from 
Verdi’s opera “Rigoletto”

M, Classical
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Melody Tracking by DP [Tachibana2010]
� Estimating hidden states by dynamic programming

t1 t2

Observation
(Voice-enhanced-

Spectrum)

t3

State
(Pitch series)

440

450

460

440

450

460

440

450

460

440

450

460

440

450

460

440

450

460
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Example of Melody Tracking
� train06.wav, distributed by LabROSA database
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Results in MIREX 2009
� Data: 379 songs, mixed in +5 dB, 0dB, and -5 dB.

Noise Robust �

Sensitive

Accompaniments

+5dB 0dB -5dB

original

processed

HPSS-based method

Robustness to large singer-to-accompaniment 
ratio is greatly improved.
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Part III: Applications of 
HPSS to MIR Tasks

III-3: Audio Genre Classification
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Audio Genre Classification
� Task: estimate genre from music audio

� Blues, classical, jazz, rock, ...
� Typical approach

� Example of features [Tzanetakis2001]
� Timbral information (MFCC, etc.)
� Melodic information
� Statistics about periodicities: Beat histogram

Feature
Extraction Classifier

audio features genre
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New Features I: Percussive Patterns

Feature Extraction

[Tsunoo2009]
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Motivation for Bar-long Percussive Patterns 
� Bar-long percussive patterns (temporal 

information) are frequently characteristic 
of a particular genre

� Difficulties
1) Mixture of harmonic and percussive components
2) Unknown bar-lines
3) Tempo fluctuation
4) Unknown multiple patterns

A B CA A A A A A C C C
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Rhythmic Structure Analysis 
by One-pass DP algorithm
� Assume that correct bar-line unit patterns are given.
� Problem: tempo fluctuation and unknown 

segmentation
� Analogous to continuous speech recognition problem
� One-pass dynamic programming algorithm can be used to 

segment

spectrogram
of percussive
sound
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Dynamic Pattern Clustering [Tsunoo2009]

� Actually, unit patterns also should be estimated.
� Chicken-and-egg problem
� Analogous to unsupervised learning problem

� Iterative algorithm based on k-means clustering
� Segment spectrogram using one-pass DP algorithm
� Update unit patterns by averaging segments

� Convergence is guaranteed mathematically
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Example of “Rhythm Map”

Rhythm 1
(Fundamental )

Interlude

Rhythm 2
(Fill-in)

Rhythm 3
(Interlude)

Rhythm 4
(Climax)

One-pass DP alignment

Fundamental melody Climax

FullSong
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Necessity of HPSS in Rhythm Map

With HPSS

Without HPSS

Rhythm patterns and structures are not extracted without HPSS!
Aug. 9, 2010 ISMIR2010 Tutorial 1DDLabNNUUOOSS 60

Extracting Common Patterns to a Particular Genre
� Apply to a collection of music pieces
� Alignment calculation by one-pass DP algorithm

� Use same set of templates
� Updating templates by k-means clustering

� Use whole music collection of a particular genre

60

Iteration
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Features and Classifiers
� Feature Vectors:

Genre-pattern Occurrence Histogram (normalized) 
� Classifier: Support Vector Machine (SVM)

61

4

1

2

4/7

1/7

2/7

Histogram Normalize
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Experimental Evaluation

� Evaluation
� 10-fold cross-validation
� Classifier: linear SVM (toolkit “Weka” used)

� Dataset
� GTZAN dataset
� 22050Hz sampling, 1ch
� 30 seconds clips
� 10 genres

� {blues, classical, country, disco, 
hiphop, jazz, metal, pop, reggae, 
rock}

� 100 songs per genre: total 
1000 songs

� Ballroom dataset
� 22050Hz sampling, 1ch
� 30 seconds clips
� 8 styles

� {chacha, foxtrot, quickstep, 
rumba, samba, tango, 
viennesewaltz, waltz}

� 100 songs per style: total 
800 songs

(standard) (rhythm-intensive)
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Extracted Percussive Patterns
� Pattern set

� Divided the datasets into 2 parts and obtained 2 sets of 
10 templates for each genre

� Example of learned templates

63
10 templates learned from “blues”

classical

country

disco

hiphop

metal

pop

reggae

rock

jazz
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Genre Classification Accuracy
� Percussive pattern feature only

� Merged with timbral features
� Statistic features such as MFCC, etc. (68 dim.) [Tzanetakis 2008]

� Performed well on audio classification tasks in MIREX 2008

Features [number of dim.] GTZAN dataset Ballroom dataset

Baseline (Random) 10.0% 12.5%

Rhythmic (from template set #1) [10/8] 43.6% 54.0%

Rhythmic (from template set #2) [10/8] 42.3% 55.125%

Features [number of dim.] GTZAN dataset Ballroom dataset

Existing (Timbre) [68] 72.4% 57.625%

Merged (from template set #1) [78/76] 76.1% 70.125%

Merged (from template set #2) [78/76] 76.2% 69.125%

Classification accuracy is improved 
by combining percussive pattern features.
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New Features II: Bass-line Patterns
[Tsunoo2009]
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Examples of Extracted Bass-line Patterns
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Genre Classification Accuracy

Classification accuracy 
with only bass-line features

Classification accuracy 
merged with timbre features

Features GTZAN dataset Ballroom dataset
Baseline (random classifier) 10.0% 10.0%

Only bass-line (400 dim.) 42.0% 44.8%
Existing (timbre, 68 dim.) 72.4% 72.4%

Merged (468 dim.) 74.4% 76.0%
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Another Application of HPSS [Rump2010]

� Autoregressive MFCC Model applied to Genre 
Classification

� HPSS increases the number of channels
mono -> three (original, harmonic, percussive)
and improves
performance
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Conclusions
� Source separation techniques used to MIR

� F0-based harmonic separation
� Non-negative matrix factorization or PLCA
� Sinusoid + Noise model
� Harmonic/percussive sound separation

� Source separation is useful
� To enhance specific components
� To increase the number of channels 

and the dimension of feature vectors
� To generate new features

Aug. 9, 2010 ISMIR2010 Tutorial 1DDLabNNUUOOSS 70

Future Works
� Application of source separation to other MIR 

tasks
� Cover song identification, audio music similarity,...

� Improvement of separation performance itself 
by exploiting musicological knowledge 

� Using spatial (especially stereo) information
� Current works are limited to monaural separation 

� Feature weighting technique for overcoming 
errors due to imperfect source separation
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Reference Book Chapter
� Advances in Music Information Retrieval, ser. Studies in 

Computational Intelligence, Z. W. Ras and A. 
Wieczorkowska, Eds. Springer, 274
� N. Ono, K. Miyamoto, H. Kameoka, 

J. Le Roux, Y. Uchiyama, E. Tsunoo, 
T. Nishimoto and S. Sagayama,
“Harmonic and Percussive Sound 
Separation and its Application
to MIR-related Tasks,” pp.213-236
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Available Separation Softwares
� Harmonic Percussive Sound Separation (HPSS)

� http://www.hil.t.u-tokyo.ac.jp/software/HPSS/

� ICA Central: Early software restricted to mixtures of two 
sources
� http://www.tsi.enst.fr/icacentral/algos.html

� SiSEC Reference Software: Linear modeling-based software 
for panned or recorded mixtures
� http://sisec2008.wiki.irisa.fr/tiki-index.php?page=Under-

determined+speech+and+music+mixtures

� QUAERO Source Separation Toolkit: Modular variance-
modeling based software implementing a range of structures: 
GMM, NMF, source-filter model, harmonicity, diffuse mixing, 
etc
� To be released Fall 2010: watch the music-ir list for an announcement!
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Advertisement: LVA/ICA 2010
� LVA/ICA 2010 is held 

will be held in St. Malo, 
France on September 
27-30, 2010. 

� More than 20 papers on
music and audio source 
separation will be 
presented.
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