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[ —— Source separation and music

Audio source separation

Many sound scenes are mixtures of several concurrent sound sources.

@ Source separatlon and music When facing such scenes, humans are able to perceive and focus on

@ Computational auditory scene analysis individual sources.
® Probabilistic linear modelin Source separation is the problem of recovering the source signals
g underlying a given mixture.

® Probabilistic variance mOdelmg It is a core problem of audio signal processing, with applications such as:

® Summary and future challenges @ hearing aids,
@ post-production, remixing and 3D upmixing,
@ spoken/multimedia document retrieval,
o MIR.
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The data at hand

As an inverse problem, source separation requires some knowledge.

Music is among the most difficult application areas of source separation
because of the wide variety of sources and mixing processes.
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Effects of microphone recording

For point sources, room acoustics result in filtering of the source signal
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where the intensity and delay of direct sound are functions of the source
position relative to the microphone.

Diffuse sources (piano, drums) amount to (infinitely) many point sources.

The mixture signal is equal to the sum of the contributions of all sources
at each microphone.
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Music sources

Music sources include acoustical or virtual instruments and singing voice.

Sound is produced by transmission of one or more excitation
movements/signals through a resonant body /filter.

This results in a wide variety of sounds characterized by their:
@ polyphony (monophonic or polyphonic)
@ temporal shape (transitory, constant or variable)
@ spectral fine structure (random or pitched)
@ spectral envelope

Piano source Violin source

) )
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Source separation and music

Software mixing effects

Usual software mixing effects include:
@ compression and equalization
@ panning, i.e. channel-dependent intensity scaling
@ reverb

@ polarity and autopan

The latter are widely employed to achieve perceptual envelopment,
whereby even point sources are mixed diffusely.

Again, the intensity of direct sound is a function of the source position and

the mixture signal is equal to the sum of the contributions of all sources in
each channel.
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Overview

Hundreds of source separation systems were designed in the last 20
years. .. ")

... but few are yet applicable to real-world music, as illustrated by the

_ : _ _ _ @ Computational auditory scene analysis
2008 and 2010 Signal Separation Evaluation Campaigns (SiSEC).

o
The wide variety of techniques boils down to three modeling paradigms:
@ computational auditory scene analysis (CASA), Q
@ probabilistic linear modeling, including independent component o
analysis (ICA) and sparse component analysis (SCA),
@ probabilistic variance modeling, including hidden Markov models
(HMM) and nonnegative matrix factorization (NMF).
ISMIR 2010 9/54 ISMIR 2010 10 /54
Computational auditory scene analysis (CASA) Auditory front-end
CASA aims to emulate the human auditory system. The sour.1d signal is flr_st converted into an auditory nerve representation
via a series of processing steps:
(Cue detectors ) (Representation) ~ (AIgornm) (OuTEun) @ outer- and middle-ear: filter
porad @ cochlear traveling wave model: filterbank
et @ haircell model: halfwave rectification + bandwise compression +
5 frequency commeonk - K| _ H
sound Cociea bt bt ered S;%L:.’m . e I" cross-band suppression
Piano and violin mixture On the cochlea
onsat/ 4
offset
peripheral channels from Ellis, 1996 )
Source formation relies on the Gestalt rules of cognition: o
0 0.5 1
° . n(s)
proximity, After compression
@ similarity,

@ continuity,

loudhess

@ closure,

@ common fate. 5 5
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Sinusoidal+noise decomposition

Many systems further decompose the signal into a collection of sinusoidal
tracks plus residual noise.

This decomposition is useful to
@ reduce the number of sound atoms to be grouped into sources,

@ enable the exploitation of advanced cues, e.g. amplitude and
frequency modulation.

Sinusoidal representation

1

=3
loudness
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Spectral cues

The Gestalt rules also translate into e.g.
@ common pitch and onset time,

similar spectral envelope,

spectral and temporal smoothness,

lack of silent time intervals,

¢ & ¢ ¢

correlated amplitude and frequency modulation.

Most effort has been devoted to the estimation of pitch by
cross-correlation of the auditory nerve representation in each band.

Correlogram (n =0's) Correlogram (n = 0.5 s)
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Computational auditory scene analysis

Spatial cues

Spatial proximity is assessed by comparing the observed
@ interchannel time difference (ITD),
@ interchannel intensity difference (1ID).

ITD (anechoic)

1ID (anechoic)

0.5
n(s) n(s)

05
n(s)

Note: in practice, most systems consider only binaural data, i.e. recorded
by in-ear microphones.

E. Vincent & N. Ono (INRIA & UTokyo) Music Source Separation

ISMIR 2010 14 / 54

Computational auditory scene analysis

Learned cues

In addition to the above primitive cues, the auditory system relies on a
range of learned cues to focus on a given source:

@ veridical expectation (episodic memory): "I know the lyrics”

@ schematic expectation (semantic memory): " The inaudible word after
love you must be babe”

@ dynamic adaptive expectation (short-term memory): " This melody
already occurred in the song”

@ conscious expectation
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Source formation and signal extraction

Each time-frequency bin or each sinusoidal track is associated to a single
source according to the above cues: this is known as binary masking.

Individual cues are ambiguous, e.g.

@ the observed 1ID/ITD may be due to a single source in the associated
direction or to several concurrent sources around that direction,

@ a given sinusoidal track may be a harmonic of different sources.

Most systems exploit several cues with some precedence order or weighting
factors determined by psycho-acousticians.
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© Probabilistic linear modeling
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Summary of CASA

Advantages:
@ wide range of spectral, spatial and learned cues

@ robustness thanks to joint exploitation of several cues

Limitations:
@ musical noise artifacts due to binary masking

@ suboptimal cues, designed for auditory scene analysis instead of
machine source separation

@ practical limitation to a few spectral and/or spatial cues, with no
general framework for the integration of additional cues

@ (historically) bottom-up approach, prone to error propagation, and
limitation to pitched sources

@ no results within recent evaluation campaigns
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Probabilistic linear modeling

Model-based audio source separation

The alternative top-down approach consists of finding the source signals
that best fit the mixture and the expected properties of audio sources.

In a probabilistic framework, this translates into
@ building generative models of the source and mixture signals,

@ inferring latent variables in a maximum a posteriori (MAP) sense.
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Probabilistic linear modeling Probabilistic linear modeling

Linear modeling Priors over the mixing vectors

The established linear modeling paradigm relies on two assumptions: The T_}_')Sng vectors Ajr encode the apparent sound direction in terms of
. ° Tif,
@ point sources o IID .Jf
© low reverberation &if-
. . For non-echoic mixtures, ITDs and IIDs are constant over frequency and
Under assumption 1, the sources and the mixing process can be modeled L .
) ) . Lo related to the direction of arrival (DOA) 6; of each source
as single-channel source signals and a linear filtering process.
A 1
. o . . TS infr
Under assumption 2, this filtering process is equivalent to complex-valued i gjefz””cTJ
multiplication in the time-frequency domain via the short-time Fourier
transform (STFT). For echoic mixtures, ITDs and 1IDs follow a smeared distribution P(Aj¢|6;)
| h i f bi ( f) Empirical distribution of ITD Empirical distribution of IID
n each time-frequency bin (n, = E
X, r: vector of mixture STFT coeff. 50‘6 50‘6 ‘;{fﬁggi{
J J: number of sources 50'4 50'4 RT;zsomI:,S
Xnf = Z SinfAj Sinf: jth source STFT coeff. 20-2 20-2 RT=1.25s
j=1 Ajs: jth mixing vector =0 PR o o S
ITD (ms) 1ID (dB)
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li.d. priors over the source STFT coefficients Inference algorithms
Most systems assume that the sources have random spectra, i.e. their
STFT coefficients Sjnr are independent and identically distributed (i.i.d.).
The magnitude STFT coefficients of audio sources are sparse: at each Given the_ ab‘?"e priors, source separation Is _typ|cally achieved by joint
frequency, few coefficients have large values while most are close to zero. MAP estimation of the source STFT coefficients Sj,r and other latent

variables (Ajf, & Tj: P, Bj) via alternating nonlinear optimization.
This property is well modeled by the generalized exponential distribution
S. (P

P(1Sinfl 1P, 6¢) p |t p: shape parameter This objective is called sparse component analysis (SCA).
: = f
inf |1P> P ﬂfr(l/p)e B;: scale parameter
For typical values of p, the MAP source STFT coefficients are nonzero for
i Speech source S i 60D1strllol?ut10n of magnitude STFT coeff. at most two sources in a stereo setting.
? 40 § | empirical . . .
g, -l Gaussian (p=2) When the number of sources is J = 2, SCA is renamed nongaussianity-
< oE Laplacian (p=1) - e :
< 0 Z? goneralized pedA based frequency-domain independent component analysis (FDICA).
=]
0 1 0 510 1 2 4
0 nO(S) 0 ISWJ (scaled to unit var?’iancc)
Note: coarser binary activity priors have also been employed.
ISMIR 2010 23 /54
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Practical illustration of separation using i.i.d. linear priors
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Time-frequency bins dominated by the center source are often erroneously
associated with the two other sources.
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Probabilistic linear modeling

Summary of probabilistic linear modeling

Advantages:
@ top-down approach

@ separation of more than one source per time-frequency bin

Limitations:
@ restricted to mixtures of non-reverberated point sources
@ separation of at most two sources per time-frequency bin
@ musical noise artifacts due to the ambiguities of spatial cues

@ no straightforward framework for the integration of spectral cues

ISMIR 2010
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Probabilistic linear modeling

SiSEC results on toy mixtures of 3 sources

I i.i.d. linear priors
[ ideal CASA mask (upper—bound)

panned

recorded (RT=250ms)

o))
) 1)) 1)

)
) ) )

Panned mixture
Estimated sources using i.i.d. linear priors

Recorded reverberant mixture
Estimated sources using i.i.d. linear priors
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Probabilistic variance modeling

© © 0 © o
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Probabilistic variance modeling

Idea 1: from sources to mixture components

Diffuse or semi-diffuse sources cannot be modeled as single-channel signals
and not even as finite dimensional signals.

Instead of considering the signal produced by each source, one may
consider its contribution to each channel of the mixture signal.

Source separation becomes the problem of estimating the multichannel
mixture components underlying the mixture.

In each time-frequency bin (n, f)

J X, ¢: vector of mixture STFT coeff.
an = Z Cjnf
j=1

J: number of sources
Cjnr: jth mixture component
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Probabilistic variance modeling

Variance modeling

Variance modeling combines these two ideas by modeling the STFT
coefficients of individual mixture components by a circular multivariate
distribution whose parameters vary over time and frequency.

The non-sparsity of source STFT coefficients over small time-frequency
regions suggests the use of a non-sparse distribution.

Speech source § . Generalized Gaussian shape parameter p

3

i

&
0 2
= 0 0
0 05 1 10' 107 10°
n(s) neighborhood size (Hz x s)
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Probabilistic variance modeling

Idea 2: translation and phase invariance

In order to overcome the ambiguities of spatial cues, additional spectral
cues are needed as shown by CASA.

Most audio sources are translation- and phase-invariant: a given sound
may be produced at any time with any relative phase across frequency.
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Probabilistic variance modeling

Choice of the distribution

For historical reasons, several distributions have been preferred in a mono
context, which can equivalently be expressed as divergence functions over
the source magnitude/power STFT coefficients:

@ Poisson <+ Kullback-Leibler divergence aka I-divergence
@ tied-variance Gaussian < Euclidean distance

@ log-Gaussian < weighted log-Euclidean distance

These distributions do not easily generalize to multichannel data.
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The multichannel Gaussian model
The zero-mean Gaussian distribution is a simple multichannel model.

1 _cHylc. e
P(Cjnf|zjnf) = e ChrZnr Cinr ZJ,,f..Jth compo.nent
det(mXjnr) covariance matrix
The covariance matrix Xj,r of each mixture component can be factored as
the product of a scalar nonnegative variance Vj,r and a mixing covariance
matrix Rj¢ respectively modeling spectral and spatial properties

¢ = VinrRjr
Under this model, the mixture STFT coefficients also follow a Gaussian

distribution whose covariance is the sum of the component covariances

1

1

e X (y VineRir) ™ Xor
J

det (fr pyan anijf>

P(Xnf|Vine, Rje) =
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Probabilistic variance modeling

Rank-1 priors over the mixing covariances

The mixing covariances Rjr encode the apparent spatial direction and
spatial spread of sound in terms of

e ITD,
e 11D,

@ normalized interchannel correlation a.k.a. interchannel coherence.

For non-reverberated point sources, the interchannel coherence is equal to
one, i.e. Rjf has rank 1

Rjr = AjAlf

The priors P(Aj¢|0;) used with linear modeling can then be simply reused.
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Probabilistic variance modeling

General inference algorithm

Independently of the priors over Vj,r and Rjr, source separation is typically
achieved in two steps:

@ joint MAP estimation of all model parameters using the expectation
maximization (EM) algorithm,

@ MAP estimation of the source STFT coefficients conditional to the
model parameters by multichannel Wiener filtering

1
J
Cjnr = VinrRjr § ViinfRjr £ Xof.
j=1
R0 5456

Probabilistic variance modeling

Full-rank priors over the mixing covariances

For reverberated or diffuse sources, the interchannel coherence is smaller
than one, i.e. Rjr has full rank.

The theory of statistical room acoustics suggests the direct+diffuse model

. A;j: direct-to-reverberant ratio
Rjr )\jAijj,— + Br Aj: d_irect mi>_<ing vector
B;: diffuse noise covariance
with

A _ [ 2 1
jf = 1+ gjz gjef2i7rf7'j

Br = (sinc(271rfd/c) Sinc(szd/c))

7j: ITD of direct sound
gj: IID of direct sound

d: microphone spacing
c: sound speed
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Probabilistic variance modeling Probabilistic variance modeling

l.i.d. priors over the source variances

Baseline systems rely again on the assumption that the sources have
random spectra and model the source variances Vj,¢ as i.i.d. and locally
constant within small time-frequency regions.

When these follow a mildly sparse prior, it can be shown that the MAP
variances are nonzero for up to four sources.

Discrete priors constraining the number of nonzero variances to one or two
have also been employed.

When the number of sources is J = 2, this model is also called
nonstationarity-based FDICA.
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Benefit of exploiting interchannel coherence

Interchannel coherence helps resolving some ambiguities of ITD and IID
and identify the predominant sources more accurately.

Linear model Covariance model
A, S, A,
s ~ -0X
3=
7
P
7 i
- |
7
4 5, M
SI
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Probabilistic variance modeling Probabilistic variance modeling

Practical illustration of separation using i.i.d. variance
priors
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Spectral priors based on template spectra

Variance modeling enables the design of phase-invariant spectral priors.

The Gaussian mixture model (GMM) represents the variance Vj,¢ of each
source at a given time by one of K template spectra wjr indexed by a
discrete state gj,

Vinf = Wjg,,¢ With P(qjn = k) = mj

Different strategies have been proposed to learn these spectra:
@ speaker-independent training on separate single-source data,
@ speaker-dependent training on separate single-source data,
@ MAP adaptation to the mixture using model selection or interpolation,

@ MAP inference from a coarse initial separation.
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Probabilistic variance modeling

Practical illustration of separation using template spectra
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Probabilistic variance modeling

Practical illustration of separation using basis spectra
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Probabilistic variance modeling

Spectral priors based on basis spectra
The GMM does not efficiently model polyphonic musical instruments.

The variance Vj,r of each source is then better represented as the linear
combination of K basis spectra wjr multiplied by time-varying scale
factors hjy,

Vipr = Z hiknWike

K
k=1

This model is also called nonnegative matrix factorization (NMF).

Again, a range of strategies have been used to learn these spectra:
@ instrument-dependent training on separate single-source data,
@ MAP adaptation to the mixture using uniform priors,

@ MAP adaptation to the mixture using trained priors.
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Probabilistic variance modeling

Constrained template/basis spectra

MAP adaptation or inference of the template/basis spectra is often needed
due to

@ the lack of training data,

@ the mismatch between training and test data.

However, it is often inaccurate: additional constraints over the spectra are
needed to further reduce overfitting.
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Probabilistic variance modeling

Harmonicity and spectral smoothness constraints

For instance, harmonicity and spectral smoothness can be enforced by
@ associating each basis spectrum with some a priori pitch p

@ modeling wj,r as the sum of fixed narrowband spectra by
representing adjacent partials at harmonic frequencies scaled by
spectral envelope coefficients ey

Lp
Wiof = D €jot bpir-
I=1

Parameter estimation now amounts to estimating the active pitches and
their spectral envelopes instead of their full spectra.

ISMIR 2010 45 / 54
Further constraints
Further constraints that have been implemented in this context include
@ source-filter model of instrumental timbre,
@ inharmonicity and tuning.
Probabilistic priors are also popular:
@ state transition priors
P(gjn = klgjn-1=1) = Tju
@ spectral continuity priors (for percussive sounds)
P( anf‘ an,ffl) = N( anf; an,ffla Uperc)
@ temporal continuity priors (for sustained sounds)
P( Jnf| n— lf) N( jnfv j,n— lfao'sust)
ISMIR 2010 47 / 54

Probabilistic variance modeling

Practical illustration of harmonicity constraints
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SiSEC results on toy mixtures of 3 sources
I adapted basis spectra
[ i.id. linear priors
panned recorded (RT=250ms)
Panned mixture )
Estimated sources using adapted basis spectra ™)) ™)) =)
Estimated sources using i.i.d. linear priors ) ) 1))
Recorded reverberant mixture )
Estimated sources using adapted basis spectra d) 1)) 1))
Estimated sources using i.i.d. linear priors )} ) )
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Probabilistic variance modeling Probabilistic variance modeling

SiSEC results on professional mixtures Summary of probabilistic variance modeling
20 Advantages:
- 15 pr——— @ top-down approach
2 10 = giins @ virtually applicable to any mixture, including to diffuse sources
Za‘) 5 I cuitar @ no hard constraint on the number of sources per time-frequency bin
0 E= piano @ fewer musical noise artifacts by joint exploitation of spatial, spectral
and learned cues
@ principled modular framework for the integration of additional cues
Tamy (2 sources) ) o
Estimated sources using adapted basis spectra g)) ) Limitations:

@ remaining musical noise artifacts

: \ . . . .
Bearlin (10 sources) ) @ current implementations limited to a few spectral and/or spatial
Estimated sources using adapted basis spectra ™)) ) 1)) cues. .. but this is gradually changing!
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Summary principles of model-based source separation
Most model-based source separation systems rely on modeling the STFT
coefficients of each source as a function of

@ a scalar variable (Sjnr or Vjnr) encoding spectral cues,

@ a vector or matrix variable (Aj or Rjf) encoding spatial cues.

Robust source separation requires priors over both types of cues:

@ spectral cues alone cannot discriminate sources with similar pitch
range and timbre,

@ spatial cues alone cannot discriminate sources with the same DOA.
Summary and future challenges
A range of informative priors have been proposed, relating for example

@ Sjpr or Vj,r to discrete or continuous latent states,
@ Ajr or Rjr to the source DOAs.

Variance modeling outperforms linear modeling.
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Summary and future challenges Summary and future challenges

Conclusion and remaining challenges References

D.L. Wang and G.J. Brown, Eds.

Computational Auditory Scene Analysis: Principles, Algorithms and Appli-
cations

Wiley/IEEE Press, 2006.
Existing systems are gradually finding their way into the industry,
especially for applications that can accomodate

To sum up, source separation is a core problem of audio signal processing
with huge potential applications.

@ a certain amount of musical noise artifacts, such as MIR,

o partial user input/feedback, such as post-production. E. Vincent, M.G. Jafari, S.A. Abdallah, M.D. Plumbley, and M.E. Davies
Probabilistic modeling paradigms for audio source separation

We believe that these two limitations could be addressed in the next 10 in Machine Audition: Principles, Algorithms and Systems

years by exploiting the full power of probabilistic modeling, especially by: IGI Global, 2010.

@ integrating more and more spatial and spectral cues,

@ making a better use of learned cues, using training data or repeated
sounds

2008 and 2010 Signal Separation Evaluation Campaigns
http://sisec.wiki.irisa.fr/
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Tutorial supported by the VERSAMUS project = Melody Extraction

= Audio Genre Classification

Contributions from Shigeki Sagayama, Kenichi Miyamoto, Hirokazu Kameoka, m Conclusions

Jonathan Le Roux, Emiru Tsunoo, Yushi Ueda, Hideyuki Tachibana,
Geroge Tzanetakis, Halfdan Rump, Other members of IPC Lab#1
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, -
Introduction Dab
Focus of th d half of this tutorial . .
Nt clary o e R Part |: Brief Introduction of

= What source separation has been used for MIR? State-of-the-arts

= How does it improve performance of MIR tasks? e

m Examples:

m Multi pitch estimation
Task itself is tightly coupled with source
separation.

m Audio genre classification
How source separation is useful?
Not straightforward.

Bif  Aug. 9, 2010 ISMIR2010 Tutorial 1 3 Oi5  ISMIR2010 Tutorial 1




Singer Identification Accompaniment Sound Reduction [Fujihara2005]

m Task: Identify a singer from music audio with m Pre-dominant FO based voice separation
accompaniment Audio input
. e —
- Typlcal approach i} FO Estimation by PreFEST [Goto2004]
i singer
audio Feature? features Classifier g
Extraction
@ Resynthesis
| pelpdaiitdataaes
= = Fig.1 [Fujihara2005]
Feature extraction
Oif  Aug. 9, 2010 ISMIR2010 Tutorial 1 6

Evaluation by Confusing Matrix

Reliable Frame Selection [Fujihara2005]

m Only reliable frame is used for classification RPN L YT L m Maleffemale
| Feature extraction | E .l- : confusion is
i o N decreased by
( for each frame ) Ré B E'é accompaniment
threshold | .l_ | reduction.
W likelihood> 7 baseline reduction only @ Combination of
a b SETTER o b SO reduction and
(Non-Vocal > [ m h - selection much
W Accepﬂ Reject @d ll 53‘ improves
L p, m— i performance.

Fig.1 [Fujihara2005] " h
— ; | Fig. 3 [Fujihara2005]
Classifier X . : .
selection only reduction and selection

Ol Aug. 9, 2010 ISMIR2010 Tutorial 1 7 Ol Aug. 9, 2010 ISMIR2010 Tutorial 1 8



Vocal Separation Based on Melody Transcriber

aluation by Identification Rate

m Melody-F0-based Vocal Separation
[Mesaros2007]
m Estimate melody-FO by melody transcription
system [Ryynanen20086].
m Generate harmonic overtones at multiple of
estimated FO.

m Estimate amplitudes and phases of overtones
based on cross correlation between original signal
and complex exponentials.

m They evaluate the effect of separation in
singer identification performance using by
different classifiers.

Blf  Aug. 9, 2010 ISMIR2010 Tutorial 1 9

Instrument Identification Feature Weighting [Kitahara2007]

m Task: Determine instruments present in music
piece
m Typical approach

spectrogram
audio | Separation| of notes Feature
to Notes Extraction
features
m Important Issue B instrument
. Classifier
m Source separation
is not perfect.
How to reduce errors?
05 Aug. 9, 2010 ISMIR2010 Tutorial 1 11

80
70

[m] w/o sep. (—
] w/ sep. |

I-
60 1
© |l .

Correct [%]

40
30
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10

0

£ K
Ry &\&«v&“@\f/&%,@e v/@\
T Y & B S g ©
N \K&\&’@/
& &

80

@ w/o sep. |-
B w/ sep. |~
70 =

60
50
40
30
20
10

0

Correct [%]

Singing to Accompaniment Ratio: -5dB  Singing to Accompaniment Ratio: 15dB
Generated by Table 1 and 2 [Mesaros2007]

Performance is much improved, especially

in low singing-to-accompaniment ratio.
ISMIR2010 Tutorial 1

Bi%  Aug. 9, 2010

m Feature vectors of each instrument are collected
from polyphonic music for training.

m Robustness of each feature is evaluated by
ratio of intra-class variance to inter-class variance:
Applying Linear discriminant analysis (LDA) for
feature weighting.

A mixture

(VnG4)

Feature vector (Vn G4)

of sounds °

| Harmonic
structure
extraction

Frequency

i
{1 B [HEH RS

Frequency

Time

(PfC4)

Feature
extraction

Time

Modified from
Fig. 1 [Kitahara2007]
Blf  Aug. 9, 2010

Frequency

Time

> ([0126,06%,.. = =
PCA LDA

Feature vector (Pf C4)

> [10.317,0.487,...| == e

ISMIR2010 Tutorial 1



Effectiveness of Feature Weighting [ Audio Tempo Estimation

Duo Trie o Quanet B PCA only m Task: Extract tempo from musical audio
" g Z i . PCA+LD.
2 el 8“@“ : g g g | WA m Typical approach:
© -
5 - subband
E, audio |STFT or | signals Onset
g < Filterbank Detection
2 detection
£ function M
£ tempo t
; : tempo . candidates | Periodicity
$iD SiD4T S S¢D SiDIT S SiD SiD4T Tracking Analvsi
Fig. 6 [Kitahara2007] nalysis
Feature weighting by LDA improves recognition rate.
Bif  Aug. 9, 2010 ISMIR2010 Tutorial 1 13 Bif  Aug. 9, 2010 ISMIR2010 Tutorial 1 14

Applying Harmonic+Noise Model | Influence of S+N Model

m Harmonic+Noise model is applied

. . . 1 EVDH+N
before calculating detection function [Alonso2007] a0 1I }ILHIL _____ g _______ e
Audio e PL '
signal "t g5l - }1 ]L R
‘ filter bank ‘ ESU---- | AN _______
- = Source separation based on g :
subspace | | SUDSDACE | gy . . 75 R e
projection projection harmonic + noise model
1 i
2 . . ZAL e I T st T I ) Y A
”%;ﬁggtg' mtiu";gta' <« Detection functions are
estimation estimation
. 0 calculatgd from both of 65 s s ac MF Scheer
periodicity periodicity - harmonic component Algorithms of periodicity detection Fig. 14 [Alons02007]
estimation | **° est\maﬂon

and noise component,
Y ‘.Flg 2 [Alonso2007] and then, they are merged.
Qb Aug. 9, 2010 ISMIR2010 Tutorial 1 15 Olb  Aug. 9, 2010 ISMIR2010 Tutorial 1 16

Separation based on H+N model shows better results.



Applying PLCA

. m PLCA (Probabilistic . .
[ st om b o) Latent Component Part Il: Harmonic/Percussive

Analysis), NMF-like -
# method is applied. Sound Separation
component component component component componeg

It increases much
candidates of tempo.

m They report its

1
1
[l
1
I
1
1
]
¥
1

effectiveness.
'. [l [
Y ¥ /
B ® ’,’
B /@ ® @ﬁm ”
® W o ] g o
© Clustering E
¥
[ Global Tempo Estimate
Fig. 1 [Chordia2009]
Blf  Aug. 9, 2010 ISMIR2010 Tutorial 1 17 Bl I1SMIR2010 Tutorial 1

Motivation and Goal of HPSS Related Works to H/P Separation

o Motivation: Music consists of two different components  m Source separation into multiple components

_ followed by classification
E] RACMDB RO = ICA and classification [Uhle2003]
= a1 8 = NMF and classification [Helen2005]
R m Steady + Transient model
R = Adaptive phase vocoder
m Subspace projection
= Matching persuit

frequency [Hz]

time[s]

harmonic component &) percussive component &

o Goal: Separation of a monaural audio signal
into harmonic and percussive components

..etc
o Target: MIR-related tasks - Good review is provided in [Daudet2005]
u multl—pltoh. analysis, chord re.c.ognltlon... H-related - Baysian NMF [Dikmen2009]
m beat tracking, rhythm recognition... P-related
0if_Aug. 9, 2010 ISMIR2010 Tutorial 1
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Point: Anisotropy of Spectrogram H/P Separation Problem

8000 —————

horizontally -
smooth |

* vertically | |
smooth

L_an__u_;n.lha.h_‘__" -
1}

1 2 3 4 5 [
time([s]

Hz
@
=1
=
(=]

.
o
=]
o

frequency [Hz]

frequency [

)
=
=
(=]

o

time[s]

harmonic component percussive component
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Formulation of H/P Separation (1/2) [ Formulation of H/P Separation (2/2)

m Formulation as an Optimization Problem:
m Objective function to minimize
J(H,P)=DW,H+ P)+Cy(H)+ Cp(P)

Closeness cost
m Under constraints:

Smoothness cost

> . .
Hiw 2 0 In MAP estimation context,
P.o=Z 0 they are corresponding
likelihood term and prior term,
respectively.

m Problem:
Find H.» and P.» from W:» on power spectrogram

8a00 8000 L

m Requirements:
1) H:»: horizontally smooth
2) P : vertically smooth
3) Hio and P.o : non-negative
4) Hi,o + P : should be close to W:.0

Olb  Aug. 9, 2010 ISMIR2010 Tutorial 1 22

m Closeness cost function: I-divergence

WwJ

DW,H+P)=)_ {WW log 75—

w,T

m Smoothness cost function: Square of difference

1 H
Cu(H) :Z E(HZ,T—I - HZ,T)z v=0.5 :
wr ZZH _ : for scale invariance

_1@—)2 ........ -

Weights to control two smoothness

- Ww,r + Hw,T + Pw,T}

1
20%

Cp(H)=Y_

w,T

(PJ

w—1,7

m A variance modeling-based separation using
m Poisson observation distribution

m Gaussian continuity priors
[Miyamoto2008, Ono2008, etc]
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Update Rules Separated Examples

m Update alternatively two kinds of variables:

= Hand P: Music piece original | H P
2
2 1
Hay o (bﬂ N +4aHu,,cHw> RWC-MDB-P-7 “PROLOGUE ” P
“r 2050,
. 2 RWC-MDB-P-12 “KAGE-ROU ” ' Y
bpw_ﬁ. + ‘/bpfm. +4apy, CPy -
Por = Sapn, RWC-MDB-P-18 “True Heart” ¢ ¢ d
m Auxiliary variables: RWC-MDB-P-25 “tell me” 4 ¢ F)
P, _ H,,
MPeT = Hyr + Pur THer = Hyr + Py RWC-MDB-J-16 “Jive 4 4 9
2 2
apy, = ) +2 Ufwr = 7= +2
b _ (VPo-1++/Put1r) b _ (VHur1+ /Huri1)
Puw.r —a}i Hur = 0_%
cpyr = 2mpy Wer CHwr = 2mpy W r
0if_Aug. 9, 2010 ISMIR2010 Tutorial 1 26

Real-Time Implementation Open Software: Real-time H/P equalizer

m Sliding Block Analysis Available at http://www.hil.t.u-tokyo.ac.jp/software/HPSS/
4 harmonic  sliding analysis block Iterations are applied m Control H/P balance of
g ; : only within sliding block audio signal in real time
@
g m Simple instructions:
ko 1) Click “Load WAV” button
arerasene | == (MU
: - formatted audio fe. A
= 2) Click “Start” button, and | =~m3,m
8 then, audio starts. v | g
g 3) Slide H/P balance bar as e
- you like and listen how
1 - the sound changes. 1 ) q
after- being- before- time 2) (
processed processed processed

Ol Aug. 9, 2010 ISMIR2010 Tutorial 1 27 Ol Aug. 9, 2010 ISMIR2010 Tutorial 1 28



SBlb

The University
of Tokyo

Part lll: Applications of
HPSS to MIR Tasks

[11-1: Audio Chord Detection

Bi5  ISMIR2010 Tutorial 1 Aug. 9, 2010 29

Typical Approach: Chroma Feature + HMM

m Feature: chroma [Fujishima1999]

m Chroma observation
probability p(x, |c,)

m Transition: chord progression
m Bigram probability p(c, | c, )

m Maximum a Posteriori Chord
Estimation [Sheh2003]
m Viterbi algorithm for ...

T
s e [t et ]

e t=1 P .
Initial prob. emission transition

Bif  Aug. 9, 2010 ISMIR2010 Tutorial 1 31

Audio Chord Detection

m Task: Estimate chord sequence and its
segmentation from music audio

Bi%  Aug. 9, 2010

ISMIR2010 Tutorial 1

Feature-refined System [Ueda2009]

Feature Extraction
Audio

¥

STFT
HPSS
ISTFT

Percussion-suppressed Harmonic-suppressed
Audio Audio

Caonstant Q Transform
Chroma Transform

Chroma Vector
Candidates

Tuning Compensation

Tuned Chroma Vectors

lRegressnanAnalysns] I DFT I

1 v

HMM-based chord recognition
24 dim. features

trainingTi T recognition

Viterbi
decoding

HMM
training

acoustic model
language model

Recognized chord

sequence

Delta Chroma Vectors  Fourier-Transformed
Chroma Vector

Oi5  Aug. 9, 2010

ISMIR2010 Tutorial 1
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Suppressing Percussive Sounds Fourier-transformed Chroma

m Percussive sounds are harmful in chord detection
I . -

__l'll 'I"'.i 'I. "|_-.""

FmrrDd1 oo

i
‘:Azmi.

Emphasize harmonic components

by HPSS
1. “-i 1..1 | =T
I —--1
-1 s
) = == ;‘i’.ﬁf Tt : .I'Sc'- I-°° e
Olb  Aug. 9, 2010 ISMIR2010 Tutorial 1 33

Tuning Compensation Delta Chroma Features

m Tuning difference among

G#
songs £
F
m Neglecting this may blur E
chroma features D,
m Choose best tuning from :é#
multiple candidates A
. i & 10 16 20 26 30 35
m Find maximum chroma y &
energy (sum of all bins of 4400Hz  4464Hz

filterbank (+25cent)

chroma)

m Assume: tuning does not
change within a song
G Gf A At B
tuning (log freq.)

Olb  Aug. 9, 2010 ISMIR2010 Tutorial 1 35

m Covariance matrix of chroma
= Highly correlated components:
diagonal-only approximation infeasible

Caused by harmonic overtones or some
pitches performed at the same time

Results in large number of parameters
m Covariance matrix is near circulant

m Assuming ...

Chroma covarlance
Harmonic overtones of all pitches have
the same structure
The amount of occurrence of the same

intervals is the same

= Circulant matrix diagonalized by DFT\.-

m Diagonal approximation of FT- : .

Chroma covariance -

= Reduces the number of model "

parameters (statistically robust)

ESEE

FT-Chroma covariance

Olb  Aug. 9, 2010 ISMIR2010 Tutorial 1 34

m Improve chord boundary accuracy
m by features representing chord boundaries
m Chord tones largely changes at chord boundary
m Delta chroma: derivative of chroma features
m Cf. Delta cepstrum (MFCC): Effective features of speech recognition

m Calculated by regression analysis of § sample points
[Sagayama&ltakura1979]

n Robust to noise

ka C(i,t+k)
AC(i,n) ==
Zkzwk
1=—6
i=1--,12
© O time
Olb  Aug. 9, 2010 ISMIR2010 Tutorial 1 36



Multiple States per Chord Experimental Evaluation

m Chroma changes from “onset” to “release” m Test Data

= capture the change by having multiple states per chord = 180 songs (12 glbums) of The Beatles (chord reference
annotation provided by C. Harte)

m 11.025 kHz sampling, 16bit, 1ch, WAV file

m tradeoff between data size and the number of states
m Frequency range: 55.0Hz-1661.2Hz (5 octaves)
m Labels

—
9 Q / & \ m 12 X major/minor =24 chords + N (no chord)

m Evaluation
© D m Album filtered 3-fold cross validation
8 albums for training, 4 albums for testing
\ // m Frame Recognition Rate
= (#correct frames) / (#total frames)
‘ Fole—= ...

time m Sampled every 100ms

pitch

Olb  Aug. 9, 2010 ISMIR2010 Tutorial 1 37 Olb  Aug. 9, 2010 ISMIR2010 Tutorial 1 38

Chord Detection Results

Err Reduc Rate
81.00% Part lll: Applications of

Err Reduc Rate

79.00%
11. 0%
77.00% o008 HPSS to MIR Tasks
75.00% best score [
73.00% [Uchiyama2008]
71.00% # 1 state
sai0mn . [11-2: Melody Extraction

Chord detection rate

67.00% i 3 states
65.00%
Chroma HE HE+TC HE+TC+FT HE+TC+DC
HE : harmonic sound emphasized
TC: tuning compensation HPSS improves chord

FT: FT chroma (diagonal covariance) detecti o
DC: Delta chroma etection pertformance
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Melody Extraction Slnglng Voice in Spectrogram

m Task: |dentify a melody pitch contour from RWC-MDB-P-25 “tell me”
polyphonic musical audio

m Typical approach: =

ToquarcyHz|

audio | Pre-dominant | FOs melody

FOs extraction Tracking

= Singing voice enhancement will be

. A. Vertical component: Percussion
useful pre-processing.

B. Horizontal component: Harmonic instrument
(piano, guiter, etc..)

C. Fluctuated component: Singing voice
Olb  Aug. 9, 2010 ISMIR2010 Tutorial 1 41 Olb  Aug. 9, 2010 ISMIR2010 Tutorial 1 42

HPSS results with different frame length

Depends on spectrogram resolution (frame-length) Example
m On short-frame STFT domain, voice appears as “H”
(time direction clustered). Frame length: 16ms H®@ Pe
m On long-frame STFT domain, voice appears as “P”
(frequency direction clustered). «; Vocal %I

Frame length: 512ms H®

L = — -

“Harmonic” “Percussive”

P
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Two-stage HPSS [Tachibana2010] Spectrogram Example
Original signal (from LabROSA dataset)

1768

HPSS with short frame

E 880

Sinusoidal Percussive g
Sound Sound g a0
HPSS with long frame 220

. . a 1 2 ] 4 5
Statlonary- q Fluqtuatlng- Tine [=1
\ sinsoidal Sound = WIIVEIEIRSIEIVle
(=singing voice)
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Spectrogram Example Separation Examples

Voice-enhanced signal (by two-stage HPSS)

Ve E L “tell me” o @ @,  F.R&B
E - “Weekend Q} “Qz “Qz F, Euro beat
: “Dance Together” ;@) :Q) :Q) M, Jazz
E | “1999” | ® @, @, M, Metal rock
§ } “Seven little crows” 'Q) (Q/ \‘Qj F, Nursery rhyme
b “La donna & mobile” from @ @y @y M, Classical

Verdi’s opera “Rigoletto”

Tine [s]
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Melody Tracking by DP [Tachibana2010] Example of Melody Tracking

m Estimating hidden states by dynamic programming

Observation u I ™ ™
(Voice-enhanced- ~ u N
Spectrum)

State
(Pitch series)

Bi%  Aug. 9, 2010

ISMIR2010 Tutorial 1

Results in MIREX 2009

m Data: 379 songs, mixed in +5 dB, 0dB, and -5 dB.

RawPitchAccuracy

100% :

90% ;l--‘

80% 4| I KD +5dB | 0dB

S 4 o
60% S AR AR
50% \-.LI 'h W HIC processed @/ @/ @/
40%

+5dB  0dB

-5dB

Accompaniments

Robustness to large singer-to-accompaniment
ratio is greatly improved.
Bib  Aug. 9, 2010

ISMIR2010 Tutorial 1
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1

m train06.wav, distributed by LabROSA database

668

Gr‘nunleruth —
Hithout Enhancement
Estinated
-
n
-
e
2
c 338
g
Fl
T
I
L
s
220
| L L . L
8 9 18 11 12 13 14

Tine [s]

Ol Aug. 9, 2010 ISMIR2010 Tutorial 1
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Part lll: Applications of
HPSS to MIR Tasks

[11-3: Audio Genre Classification
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Audio Genre Classification New Features I: Percussive Patterns

m Task: estimate genre from music audio lMusica, Audio Signal
m Blues, classical, jazz, rock, ...

m Typical approach

Harmonics / Percussions Separation

Percussion-Emphasized
Spectrogram

audio | Feature features N genre
- Extraction Classifier =

ILLEVTTEM  Rhythmic Updating
Rhythmic Structure Unit
m Example of features [Tzanetakis2001] Structure Patterns

= Timbral information (MFCC, etc.) P e
= Melodic information
m Statistics about periodicities: Beat histogram Feature Extraction

Bar-long
Patterns

[Tsunoo2009]

Olb  Aug. 9, 2010 ISMIR2010 Tutorial 1 53 075  Aug. 9, 2010 ISMIR2010 Tutorial 1 54

Rhythmic Structure Analysis
Motivation for Bar-long Percussive Patterns by One-pass DP algorithm

m Bar-long percussive patterns (temporal m Assume that correct bar-line unit patterns are given.
information) are frequently characteristic m Problem: tempo fluctuation and unknown

of a particular genre segmentation )
= Analogous to continuous speech recognition problem

m Difficulties m  One-pass dynamic programming algorithm can be used to
1) Mixture of harmonic and percussive components segment

2) Unknown bar-lines , // //
/ = //

3) Tempo fluctuation
4) Unknown multiple patterns

spectrogram
of percussive
sound

At
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Dynamic Pattern Clustering [Tsunoo2009] Example of “Rhythm Map”

= Actually, unit patterns also should be estimated. = One-pass DE alignment,
m  Chicken-and-egg problem Rhythm 1 |
= Analogous to unsupervised learning problem (Fundamental ) ‘ ‘
m lterative algorithm based on k-means clustering '
m  Segment spectrogram using one-pass DP algorithm
. . Rhythm 2
m Update unit patterns by averaging segments (Fill-in)
m Convergence is guaranteed mathematically
Rhythm 3
(Interlude)
—
Rhy_thm 4 Fundamental melodyLYJ Climax
(Climax) o
. Interlude *i-
57 s
Bif  Aug. 9, 2010 ISMIR2010 Tutorial 1 57 Bif  Aug. 9, 2010 ISMIR2010 Tutorial 1 58

Necessity of HPSS in Rhythm Map

p 1 ' m Apply to a collection of music pieces
i ”’” ’H”F m Alignment calculation by one-pass DP algorithm
. 3 E) £
With HPSS j' oG * - r' JL!.'LLl g J m  Use same set of templates

a"I “ al g m Updating templates by k-means clustering Iteration
Sl m,j & Ir,‘_mfr!,ug,bl,,l. e N m  Use whole music collection of a particular genre/

WIthOUt HPSS T Frame'Nomber -~ :' Frame Number i ’ ” J
= 5 £
e e I ]””w

Rhythm patterns and structures are not extracted without HPSS! song7 song?

60
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Features and Classifiers Experimental Evaluation

m Feature Vectors: Dataset (standard) (rhythm-intensive)
Genre-pattern Occurrence Histogram (normalized) GTZAN dataset Ballroom dataset
m Classifier: Support Vector Machine (SVM) 22050Hz sampling, 1ch 22050Hz sampling, 1ch
30 seconds clips 30 seconds clips
10 genres 8 styles
il / {blues, classical, country, disco, {chacha, foxtrot, quickstep,
4 a7 hiphop, jazz, metal, pop, reggae, rumba, samba, tango,
rock} viennesewaltz, waltz}
» 1 » 7 100 songs per genre: total 100 songs per style: total
1000 songs 800 songs
) o7 m Evaluation
Histogram  Normalize m 10-fold cross-validation

m Classifier: linear SVM (toolkit “Weka” used)

61
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Extracted Percussive Patterns Genre Classification Accuracy

m Pattern set m Percussive pattern feature only
m Divided the datasets into 2 parts and obtained 2 sets of
10 templates for each genre Baseline (Random) 10.0% 12.5%
. Rhythmic (from template set #1) [10/8] 43.6% 54.0%
m Example of learned templates ciassical bid i il Rhythmic (from template set #2) [10/8] 42.3% 55.125%
try | M | . .
bbbkl L't di dad °°d“_" v ;l': M*-t‘“- m Merged with timbral features
" Isco . Lo .
bidsiiinaidh U L, w11 Ij.h H'”“ m Statistic features such as MFCC, etc. (68 dim.) [Tzanetakis 2008]
iphop L . . .
bkl lad ) m Performed well on audio classification tasks in MIREX 2008
: [L‘- E— N T TR
| | : i
[ NN A i LA .L..‘l.‘-’ii metal m Existing (Timbre) [68] 72.4% 57.625%
Rl kbl il i pop kBl el Merged (from template set #1) [78/76] l 76.1% l 70.125%
10 templates learned from “blues” reggae | Lok ki Merged (from template set #2) [78/76] 76.2% 69.125%

rock | Lkl Classification accuracy is improved
by combining percussive pattern features.
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New Features Il: Bass-line Patterns J Examples of Extracted Bass-line Patterns

l Musical Audio Signal [Tsunoo2009] Jazz Rock
Harmonics / Percussions Separation e E =n L
1 Harmonic Sound l Percussive Sound - *':_'—:-: _ — — l|
Low-pass filtering Blues - Hiphop
Bass sound l Bar Lines " S ——|
- C—

q Bass-line Pattern Clustering -.__z___—: | ']____—-* |

l Bass-line Pattern

Feature Vector

Supervised learning
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Genre Classification Accuracy Another Application of HPSS [Rump2010]

m Autoregressive MFCC Model applied to Genre

40 -'_"' 76
g f-' —avta i 77 I—\ Classification
30 L ——

“--data 2

giﬁ T e ——— m HPSS increases t'htla number of ghannels .
15 B mono -> three (original, harmonic, percussive)
ns] n ET"’;E‘Q and improves 4o Training classifier with MAR coefficients
D et et o B o oo Wl et B performance ors| 2o: ] b
Classification accuracy Classification accuracy E 7
with only bass-line features merged with timbre features 0=
Baseline (random classifier) 10.0% 10.0% 19 14 e !
Only bass-line (400 dim.) 42.0% 44.8% Ry - oo pertomenc
Existing (timbre, 68 dim.) 72.4% 72.4% _ b
Merged (468 dim.) 74.4% 76.0% e SMIFO b oy o
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m Source separation techniques used to MIR m Application of source separation to other MIR

= FO-based harmonic separation tasks
= Non-negative matrix factorization or PLCA m Cover song identification, audio music similarity,...
= Sinusoid + Noise model m Improvement of separation performance itself
. . . by exploiting musicological knowledge
m Harmonic/percussive sound separation . ) . . ]
= Source separation is useful m Using spatial (especially stereo) information
T N P " t = Current works are limited to monaural separation
® To enhance specific components

m Feature weighting technique for overcoming

= To increase the number of channels errors due to imperfect source separation
and the dimension of feature vectors

= To generate new features
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Available Separation Softwares

Reference Book Chapter

m Advances in Music Information Retrieval, ser. Studies in m Harmonic Percussive Sound Separation (HPSS)
Computational Intelligence, Z. W. Ras and A. "
Wieczorkowska, Eds. Springer, 274 : - m ICA Central: Early software restricted to mixtures of two

= N. Ono, K. Miyamoto, H. Kameoka, sources
J. Le Roux, Y. Uchiyama, E. Tsunoo, . . -
T. Nishimoto and S. Sagayama, - http.//www.tS|.enst.fr/lcacentraI/a-lgos.html .
m SiSEC Reference Software: Linear modeling-based software

“Harmonic and Percussive Sound
Separation and its Application for panned or recorded mixtures

to MIR-related Tasks,” pp.213-236 Advances in Intelligent e - .y - _ §
Information Systems = http://sisec2008.wiki.irisa.fr/tiki-index.php?page=Under.

determined+speech+and+music+mixtures
m QUAERO Source Separation Toolkit: Modular variance-
modeling based software implementing a range of structures:
GMM, NMF, source-filter model, harmonicity, diffuse mixing,
etc
= To be released Fall 2010: watch the music-ir list for an announcement!
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Advertisement: LVA/ICA 2010

m LVA/ICA 2010 is held m Singer/Instrument Identification

" L‘!AMLCA 20102~ will be held in St. Malo, = H. Fujihara, T. Kitahara, M. Goto, K. Komatani, T. Ogata and H.
= W Lot T e Okuno, "Singer Identification Based on Accompaniment Sound
™ E. Q) France on September Reduction and Reliable Frame Selection, “ Proc. ISMIR, 2005.

| 27-30, 2010.

M. Goto, “A real-time music-scene description system: predominant-FO
m More than 20 papers on estimation,” Speech Communication, vol. 43, no. 4, pp. 311-329, 2004.

. . A. Mesaros, T. Virtanen and A. Klapuri, “Singer identification in
music a.nd agdlo source polyphonic music using vocal separation and pattern recognition
separation will be methods,” Proc. ISMIR, pp. 375-378, 2007.

presented. = M. Ryynanen and A. Klapuri, "Transcription of the Singing Melody in
Polyphonic Music”, Proc. ISMIR, 2006.

T. Kitahara, M. Goto, K. Komatani, T. Ogata and H. G. Okuno,
“Instrument identification in polyphonic music: feature weighting to
minimize influence of sound overlaps,” EURASIP Journal on Applied
Signal Processing, vol. 2007, 2007, article ID 51979.
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References References

m Audio Tempo Estimation m Harmonic/Percussive Sound Separation
= M. Alonso, G. Richard and B. David, "Accurate tempo estimation = K. Miyamoto, H. Kameoka, N. Ono and S. Sagayama, “Separation of
based on harmonic + noise decomposition," EURASIP Journal on Harmonic and Non-Harmonic Sounds Based on Anisotropy in
Advances in Signal ProcessingVolume 2007 (2007), Article ID 82795 Spectrogram, Proc. ASJ, pp.903-904, 2008. (in Japanese)
= P. Chordia and A. Rae, "Using Source Separation to Improve Tempo = N. Ono, K. Miyamoto, J. Le Roux, H. Kameoka and S. Sagayama,
Detection," Proc. ISMIR, pp. 183-188, 2009. “Separation of a Monaural Audio Signal into Harmonic/Percussive
. | Diffusi ” Proc.
» Related Works to H/P Separatlon gz)jrgﬁggeontgo%y&Comp ementary Diffusion on Spectrogram,” Proc.
m C. Uhle, C. Dittmar, and T. Sporer, “Extraction of drum tracks from = N. Ono, K. Miyamoto, J. Le Roux, H. Kameoka and S. Sagayama, “A
polyphonic music using independent subspace analysis," Proc. ICA, Real-time Equalizer of Harmonic and Percussive Components in
pp. 843-847, 2003. Music Signals,” Proc. of ISMIR, pp.139-144, 2008.
= M. Helen and T. Virtanen, "Separation of drums from polyphonic music = N. Ono, K. Miyamoto, H. Kameoka, J. Le Roux, Y. Uchiyama, E.
using non-negative matrix factorization and support vector machine," Tsunoo, T. Nishimoto and S. Sagayama, “Harmonic and Percussive
Proc. EUSIPCO, Sep. 2005. Sound Separation and its Application to MIR-related Tasks,” Advances
= L. Daudet, "A Review on Techniques for the Extraction of Transients in in Music Information Retrieval, ser. Studies in Computational
Musical Signals," Proc. CMMR, pp. 219-232, 2005. Intelligence, Z. W. Ras and A. Wieczorkowska, Eds. Springer, 274,
= O. Dikmen, A. T. Cemgil, “Unsupervised Single-channel Source pp.213-236, Feb., 2010.

Separation Using Basian NMF,” Proc. WASPAA, pp. 93-96, 2009.
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References References

m Applications of HPSS to MIR Tasks

m Y. Ueda, Y. Uchiyama, T. Nishimoto, N. Ono and S.
Sagayama, “HMM-Based Approach for Automatic Chord
Detection Using Refined Acoustic Features,” Proc.
ICASSP, pp.5518-5521, 2010.

m J. Reed, Y. Ueda, S. M. Siniscalchi, Y. Uchiyama, S.
Sagayama, C. -H. Lee, “Minimum Classification Error
Training to Improve Isolated Chord Recognition,” Proc.
ISMIR, pp.609-614, 2009.

m H. Tachibana, T. Ono, N. Ono and S. Sagayama, “Melody
Line Estimation in Homophonic Music Audio Signals
Based on Temporal-Variability of Melodic Source,” Proc.
ICASSP, pp.425-428, 2010.

m H. Rump, S. Miyabe, E. Tsunoo, N. Ono and S. Sagayama,

“On the Feature Extraction of Timbral Dynamics,” Proc.
ISMIR, 2010.
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m Applications of HPSS in MIR Tasks

m E. Tsunoo, N. Ono and S. Sagayama, “ Rhythm Map:
Extraction of Unit Rhythmic Patterns and Analysis of
Rhythmic Structure from Music Acoustic Signals,” Proc.
ICASSP, pp.185-188, 2009.

m E. Tsunoo, G. Tzanetakis, N. Ono and S. Sagayama,
“Audio Genre Classification Using Percussive Pattern
Clustering Combined with Timbral Features,” Proc. ICME,
pp.382-385, 2009.

m E. Tsunoo, N. Ono and S. Sagayama, “Musical Bass-Line

Pattern Clustering and Its Application to Audio Genre
Classification,” Proc. ISMIR, pp.219-224, 2009.
m E. Tsunoo, T. Akase, N. Ono and S. Sagayama, “Music

Mood Classification by Rhythm and Bass-line Unit Pattern
Analysis,” Proc. ICASSP, pp.265-268, 2010.
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