Music Source Separation
and its Applications to MIR

Emmanuel Vincent and Nobutaka Ono
INRIA Rennes - Bretagne Atlantique, France
The University of Tokyo, Japan
Tutorial supported by the VERSAMUS project http://versamus.inria.fr/
Contributions from Alexey Ozerov, Ngoc Duong, Simon Arberet, Martin Klein-Hennig and Volker Hohmann.
$2 / I N R I A$ the Universityof Tokyo

Audio source separation

Many sound scenes are mixtures of several concurrent sound sources.
When facing such scenes, humans are able to perceive and focus on individual sources.

Source separation is the problem of recovering the source signals underlying a given mixture.

It is a core problem of audio signal processing, with applications such as:

- hearing aids,
- post-production, remixing and 3D upmixing,
- spoken/multimedia document retrieval,
- MIR.

The data at hand
As an inverse problem, source separation requires some knowledge.
Music is among the most difficult application areas of source separation because of the wide variety of sources and mixing processes.

E. Vincent \& N. Ono (INRIA \& UTokyo)

Source separation and music

Effects of microphone recording

For point sources, room acoustics result in filtering of the source signal

where the intensity and delay of direct sound are functions of the source position relative to the microphone.

Diffuse sources (piano, drums) amount to (infinitely) many point sources.
The mixture signal is equal to the sum of the contributions of all sources at each microphone.

Music sources

Music sources include acoustical or virtual instruments and singing voice.
Sound is produced by transmission of one or more excitation movements/signals through a resonant body/filter.

This results in a wide variety of sounds characterized by their:

- polyphony (monophonic or polyphonic)
- temporal shape (transitory, constant or variable)
- spectral fine structure (random or pitched)
- spectral envelope

Overview

Hundreds of source separation systems were designed in the last 20 years...
...but few are yet applicable to real-world music, as illustrated by the 2008 and 2010 Signal Separation Evaluation Campaigns (SiSEC).

The wide variety of techniques boils down to three modeling paradigms:

- computational auditory scene analysis (CASA),
- probabilistic linear modeling, including independent component analysis (ICA) and sparse component analysis (SCA),
- probabilistic variance modeling, including hidden Markov models (HMM) and nonnegative matrix factorization (NMF).
- Source separation and music
- Computational auditory scene analysis
- Probabilistic linear modeling
- Probabilistic variance modeling
- Summary and future challenges

Computational auditory scene analysis (CASA)

CASA aims to emulate the human auditory system.

Source formation relies on the Gestalt rules of cognition:

- proximity,
- similarity,
- continuity,
- closure,
- common fate.
E. Vincent \& N. Ono (INRIA \& UTokyo) Music Source Separation ISMIR 2010 11/54

Auditory front-end

The sound signal is first converted into an auditory nerve representation via a series of processing steps:

- outer- and middle-ear: filter
- cochlear traveling wave model: filterbank
- haircell model: halfwave rectification + bandwise compression + cross-band suppression

ISMIR 2010

Sinusoidal+noise decomposition

Many systems further decompose the signal into a collection of sinusoidal tracks plus residual noise.

This decomposition is useful to

- reduce the number of sound atoms to be grouped into sources,
- enable the exploitation of advanced cues, e.g. amplitude and frequency modulation.

Spatial cues

Spatial proximity is assessed by comparing the observed

- interchannel time difference (ITD),
- interchannel intensity difference (IID).

Note: in practice, most systems consider only binaural data, i.e. recorded by in-ear microphones.
E. Vincent \& N. Ono (INRIA \& UTokyo) Music Source Sparation ISMIR 2010 14/54

Spectral cues

The Gestalt rules also translate into e.g.

- common pitch and onset time,
- similar spectral envelope,
- spectral and temporal smoothness,
- lack of silent time intervals,
- correlated amplitude and frequency modulation.

Most effort has been devoted to the estimation of pitch by cross-correlation of the auditory nerve representation in each band.

Learned cues

In addition to the above primitive cues, the auditory system relies on a range of learned cues to focus on a given source:

- veridical expectation (episodic memory): "I know the lyrics"
- schematic expectation (semantic memory): "The inaudible word after love you must be babe"
- dynamic adaptive expectation (short-term memory): "This melody already occurred in the song"
- conscious expectation

Source formation and signal extraction

Each time-frequency bin or each sinusoidal track is associated to a single source according to the above cues: this is known as binary masking.

Individual cues are ambiguous, e.g.

- the observed IID/ITD may be due to a single source in the associated direction or to several concurrent sources around that direction,
- a given sinusoidal track may be a harmonic of different sources.

Most systems exploit several cues with some precedence order or weighting factors determined by psycho-acousticians.

Summary of CASA

Advantages:

- wide range of spectral, spatial and learned cues
- robustness thanks to joint exploitation of several cues

Limitations:

- musical noise artifacts due to binary masking
- suboptimal cues, designed for auditory scene analysis instead of machine source separation
- practical limitation to a few spectral and/or spatial cues, with no general framework for the integration of additional cues
- (historically) bottom-up approach, prone to error propagation, and limitation to pitched sources
- no results within recent evaluation campaigns

Model-based audio source separation

- Source separation and music
- Computational auditory scene analysis
- Probabilistic linear modeling
- Probabilistic variance modeling
- Summary and future challenges

The alternative top-down approach consists of finding the source signals that best fit the mixture and the expected properties of audio sources.

In a probabilistic framework, this translates into

- building generative models of the source and mixture signals,
- inferring latent variables in a maximum a posteriori (MAP) sense.

Linear modeling

The established linear modeling paradigm relies on two assumptions:
(1) point sources
(2) low reverberation

Under assumption 1, the sources and the mixing process can be modeled as single-channel source signals and a linear filtering process.

Under assumption 2, this filtering process is equivalent to complex-valued multiplication in the time-frequency domain via the short-time Fourier transform (STFT).

In each time-frequency bin (n, f)

$$
\mathbf{X}_{n f}=\sum_{j=1}^{J} S_{j n f} \mathbf{A}_{j f} \quad \begin{aligned}
& \mathbf{X}_{n f}: \text { vector of mixture STFT coeff. } \\
& J: \text { number of sources } \\
& S_{j n f}: j \text { th source STFT coeff. } \\
& \mathbf{A}_{j f}: j \text { th mixing vector }
\end{aligned}
$$

E. Vincent \& N. Ono (INRIA \& UTokyo)

Priors over the mixing vectors

The mixing vectors $\mathbf{A}_{j f}$ encode the apparent sound direction in terms of

- ITD $\tau_{j f}$,
- IID $g_{j f}$.

For non-echoic mixtures, ITDs and IIDs are constant over frequency and related to the direction of arrival (DOA) θ_{j} of each source

$$
\mathbf{A}_{j f} \propto\binom{1}{g_{j} e^{-2 i \pi f \tau_{j}}}
$$

For echoic mixtures, ITDs and IIDs follow a smeared distribution $P\left(\mathbf{A}_{j f} \mid \theta_{j}\right)$

I.i.d. priors over the source STFT coefficients

Most systems assume that the sources have random spectra, i.e. their STFT coefficients $S_{j n f}$ are independent and identically distributed (i.i.d.).

The magnitude STFT coefficients of audio sources are sparse: at each frequency, few coefficients have large values while most are close to zero.

This property is well modeled by the generalized exponential distribution $P\left(\mid S_{j n f} \| p, \beta_{f}\right)=\frac{p}{\beta_{f} \Gamma(1 / p)} e^{-\left|\frac{S_{j n f}}{\beta_{f}}\right|^{p}} \quad \begin{aligned} & p: \text { shape parameter } \\ & \beta_{j}: \text { scale parameter }\end{aligned}$

Note: coarser binary activity priors have also been employed.

Inference algorithms

Given the above priors, source separation is typically achieved by joint MAP estimation of the source STFT coefficients $S_{j n f}$ and other latent variables $\left(\mathbf{A}_{j f}, g_{j}, \tau_{j}, p, \beta_{j}\right)$ via alternating nonlinear optimization.

This objective is called sparse component analysis (SCA).
For typical values of p, the MAP source STFT coefficients are nonzero for at most two sources in a stereo setting.

When the number of sources is $J=2$, SCA is renamed nongaussianitybased frequency-domain independent component analysis (FDICA).

Practical illustration of separation using i.i.d. linear priors

Time-frequency bins dominated by the center source are often erroneously associated with the two other sources.

SiSEC results on toy mixtures of 3 sources

Panned mixture
Estimated sources using i.i.d. linear priors
Recorded reverberant mixture
Estimated sources using i.i.d. linear priors (4))

Summary of probabilistic linear modeling

Advantages:

- top-down approach
- separation of more than one source per time-frequency bin

Limitations:

- restricted to mixtures of non-reverberated point sources
- separation of at most two sources per time-frequency bin
- musical noise artifacts due to the ambiguities of spatial cues
- no straightforward framework for the integration of spectral cues
- Source separation and music
- Computational auditory scene analysis
- Probabilistic linear modeling
- Probabilistic variance modeling
- Summary and future challenges

Idea 1: from sources to mixture components

Diffuse or semi-diffuse sources cannot be modeled as single-channel signals and not even as finite dimensional signals.

Instead of considering the signal produced by each source, one may consider its contribution to each channel of the mixture signal.

Source separation becomes the problem of estimating the multichannel mixture components underlying the mixture.

In each time-frequency bin (n, f)

$$
\mathbf{X}_{n f}=\sum_{j=1}^{J} \mathbf{C}_{j n f} \quad \begin{aligned}
& \mathbf{X}_{n f}: \text { vector of mixture STFT coeff. } \\
& J: \text { number of sources } \\
& \mathbf{C}_{j n f}: j \text { th mixture component }
\end{aligned}
$$

Idea 2: translation and phase invariance

In order to overcome the ambiguities of spatial cues, additional spectral cues are needed as shown by CASA.

Most audio sources are translation- and phase-invariant: a given sound may be produced at any time with any relative phase across frequency.

Variance modeling

Variance modeling combines these two ideas by modeling the STFT coefficients of individual mixture components by a circular multivariate distribution whose parameters vary over time and frequency.

The non-sparsity of source STFT coefficients over small time-frequency regions suggests the use of a non-sparse distribution.

Choice of the distribution

For historical reasons, several distributions have been preferred in a mono context, which can equivalently be expressed as divergence functions over the source magnitude/power STFT coefficients:

- Poisson \leftrightarrow Kullback-Leibler divergence aka I-divergence
- tied-variance Gaussian \leftrightarrow Euclidean distance
- log-Gaussian \leftrightarrow weighted log-Euclidean distance

These distributions do not easily generalize to multichannel data.

The multichannel Gaussian model

The zero-mean Gaussian distribution is a simple multichannel model.

$$
P\left(\mathbf{C}_{j n f} \mid \boldsymbol{\Sigma}_{j n f}\right)=\frac{1}{\operatorname{det}\left(\pi \boldsymbol{\Sigma}_{j n f}\right)} e^{-\mathbf{C}_{j n f}^{H} \boldsymbol{\Sigma}_{j n f}^{-1} \mathbf{C}_{j n f}} \quad \begin{aligned}
& \boldsymbol{\Sigma}_{j n f}: \text { jth component } \\
& \text { covariance matrix }
\end{aligned}
$$

The covariance matrix $\boldsymbol{\Sigma}_{j n f}$ of each mixture component can be factored as the product of a scalar nonnegative variance $V_{j n f}$ and a mixing covariance matrix $\mathbf{R}_{j f}$ respectively modeling spectral and spatial properties

$$
\boldsymbol{\Sigma}_{j n f}=V_{j n f} \mathbf{R}_{j f}
$$

Under this model, the mixture STFT coefficients also follow a Gaussian distribution whose covariance is the sum of the component covariances

$$
P\left(\mathbf{X}_{n f} \mid V_{j n f}, \mathbf{R}_{j f}\right)=\frac{1}{\operatorname{det}\left(\pi \sum_{j=1}^{J} V_{j n f} \mathbf{R}_{j f}\right)} e^{-\mathbf{X}_{n f}^{H}\left(\sum_{j=1}^{J} V_{j n f} \mathbf{R}_{j f}\right)^{-1} \mathbf{X}_{n f}}
$$

$$
\widehat{\mathbf{C}}_{j n f}=V_{j n f} \mathbf{R}_{j f}\left(\sum_{j^{\prime}=1}^{J} v_{j^{\prime} n f} \mathbf{R}_{j^{\prime} f}\right)^{-1} \mathbf{x}_{n f}
$$

$\begin{array}{lll}\text { E. Vincent \& N. Ono (INRIA \& UTokyo) } \quad \text { Music Source Separation } & \text { ISMIR } 201034 / 54\end{array}$

Rank-1 priors over the mixing covariances

The mixing covariances $\mathbf{R}_{j f}$ encode the apparent spatial direction and spatial spread of sound in terms of

- ITD,
- IID,
- normalized interchannel correlation a.k.a. interchannel coherence.

For non-reverberated point sources, the interchannel coherence is equal to one, i.e. $\mathbf{R}_{j f}$ has rank 1

$$
\mathbf{R}_{j f}=\mathbf{A}_{j f} \mathbf{A}_{j f}^{H}
$$

The priors $P\left(\mathbf{A}_{j f} \mid \theta_{j}\right)$ used with linear modeling can then be simply reused.

Independently of the priors over $V_{j n f}$ and $\mathbf{R}_{j f}$, source separation is typically achieved in two steps:

- joint MAP estimation of all model parameters using the expectation maximization (EM) algorithm,
- MAP estimation of the source STFT coefficients conditional to the model parameters by multichannel Wiener filtering
General inference algorithm

I.i.d. priors over the source variances

Baseline systems rely again on the assumption that the sources have random spectra and model the source variances $V_{\text {jnf }}$ as i.i.d. and locally constant within small time-frequency regions.

When these follow a mildly sparse prior, it can be shown that the MAP variances are nonzero for up to four sources.

Discrete priors constraining the number of nonzero variances to one or two have also been employed.

When the number of sources is $J=2$, this model is also called nonstationarity-based FDICA.

Benefit of exploiting interchannel coherence

Interchannel coherence helps resolving some ambiguities of ITD and IID and identify the predominant sources more accurately.

Practical illustration of separation using i.i.d. variance priors

Spectral priors based on template spectra

Variance modeling enables the design of phase-invariant spectral priors.
The Gaussian mixture model (GMM) represents the variance $V_{\text {jnf }}$ of each source at a given time by one of K template spectra $w_{j k f}$ indexed by a discrete state $q_{j n}$

$$
V_{j n f}=w_{j q_{j n} f} \text { with } P\left(q_{j n}=k\right)=\pi_{j k}
$$

Different strategies have been proposed to learn these spectra:

- speaker-independent training on separate single-source data,
- speaker-dependent training on separate single-source data,
- MAP adaptation to the mixture using model selection or interpolation,
- MAP inference from a coarse initial separation.

Spectral priors based on basis spectra
The GMM does not efficiently model polyphonic musical instruments.
The variance $V_{j n f}$ of each source is then better represented as the linear combination of K basis spectra $w_{j k f}$ multiplied by time-varying scale factors $h_{j k n}$

$$
V_{j n f}=\sum_{k=1}^{K} h_{j k n} w_{j k f}
$$

This model is also called nonnegative matrix factorization (NMF).
Again, a range of strategies have been used to learn these spectra:

- instrument-dependent training on separate single-source data,
- MAP adaptation to the mixture using uniform priors,
- MAP adaptation to the mixture using trained priors.
$\begin{array}{llll}\text { E. Vincent \& N. Ono (INRIA \& UTokyo) } & \text { Music Source Separation } & \text { ISMIR } 2010 & 42 / 54\end{array}$

Harmonicity and spectral smoothness constraints

For instance, harmonicity and spectral smoothness can be enforced by - associating each basis spectrum with some a priori pitch p

- modeling $w_{j p f}$ as the sum of fixed narrowband spectra $b_{p l f}$ representing adjacent partials at harmonic frequencies scaled by spectral envelope coefficients $e_{j p l}$

$$
w_{j p f}=\sum_{l=1}^{L_{p}} e_{j p l} b_{p l f} .
$$

Parameter estimation now amounts to estimating the active pitches and their spectral envelopes instead of their full spectra.

Probabilistic variance modeling

Further constraints

Further constraints that have been implemented in this context include

- source-filter model of instrumental timbre,
- inharmonicity and tuning.

Probabilistic priors are also popular:

- state transition priors

$$
P\left(q_{j n}=k \mid q_{j, n-1}=l\right)=\pi_{j k l}
$$

- spectral continuity priors (for percussive sounds)

$$
P\left(V_{j n f} \mid V_{j n, f-1}\right)=\mathcal{N}\left(V_{j n f} ; V_{j n, f-1}, \sigma_{\text {perc }}\right)
$$

- temporal continuity priors (for sustained sounds)

$$
P\left(V_{j n f} \mid V_{j, n-1, f}\right)=\mathcal{N}\left(V_{j n f} ; V_{j, n-1, f}, \sigma_{\text {sust }}\right)
$$

Practical illustration of harmonicity constraints

E. Vincent \& N. Ono (INRIA \& UTokyo)

SiSEC results on professional mixtures

Tamy (2 sources)	(4))
Estimated sources using adapted basis spectra	(1))
Bearlin (10 sources)	
Estimated sources using adapted basis spectra	(1))

Summary of probabilistic variance modeling

Advantages:

- top-down approach
- virtually applicable to any mixture, including to diffuse sources
- no hard constraint on the number of sources per time-frequency bin
- fewer musical noise artifacts by joint exploitation of spatial, spectral and learned cues
- principled modular framework for the integration of additional cues

Limitations:

- remaining musical noise artifacts
- current implementations limited to a few spectral and/or spatial cues. . . but this is gradually changing!
(0) Source separation and music
- Computational auditory scene analysis
- Probabilistic linear modeling
- Probabilistic variance modeling
- Summary and future challenges

Summary principles of model-based source separation

Most model-based source separation systems rely on modeling the STFT coefficients of each source as a function of

- a scalar variable ($S_{j n f}$ or $V_{j n f}$) encoding spectral cues,
- a vector or matrix variable ($\mathbf{A}_{j f}$ or $\mathbf{R}_{j f}$) encoding spatial cues.

Robust source separation requires priors over both types of cues:

- spectral cues alone cannot discriminate sources with similar pitch range and timbre,
- spatial cues alone cannot discriminate sources with the same DOA.

A range of informative priors have been proposed, relating for example

- $S_{j n f}$ or $V_{j n f}$ to discrete or continuous latent states,
- $\mathbf{A}_{j f}$ or $\mathbf{R}_{j f}$ to the source DOAs.

Variance modeling outperforms linear modeling.

Conclusion and remaining challenges

To sum up, source separation is a core problem of audio signal processing with huge potential applications.

Existing systems are gradually finding their way into the industry, especially for applications that can accomodate

- a certain amount of musical noise artifacts, such as MIR,
- partial user input/feedback, such as post-production.

We believe that these two limitations could be addressed in the next 10 years by exploiting the full power of probabilistic modeling, especially by:

- integrating more and more spatial and spectral cues,
- making a better use of learned cues, using training data or repeated sounds

References

D.L. Wang and G.J. Brown, Eds.

Computational Auditory Scene Analysis: Principles, Algorithms and Applications
Wiley/IEEE Press, 2006.
E. Vincent, M.G. Jafari, S.A. Abdallah, M.D. Plumbley, and M.E. Davies Probabilistic modeling paradigms for audio source separation
in Machine Audition: Principles, Algorithms and Systems IGI Global, 2010.

2008 and 2010 Signal Separation Evaluation Campaigns http://sisec.wiki.irisa.fr/

Music Source Separation and its Applications to MIR

Nobutaka Ono and Emmanuel Vincent The University of Tokyo, Japan
INRIA Rennes - Bretagne Atlantique, France

Tutorial supported by the VERSAMUS project
http://versamus.inria.fr/
Contributions from Shigeki Sagayama, Kenichi Miyamoto, Hirokazu Kameoka, Jonathan Le Roux, Emiru Tsunoo, Yushi Ueda, Hideyuki Tachibana Geroge Tzanetakis, Halfdan Rump, Other members of IPC Lab\#1

Outline

- Introduction
- Part I: Brief Introduction of State-of-the-arts
- Singer/Instrument Identification
- Audio Tempo Estimation
- Part II: Harmonic/Percussive Sound Separation
- Motivation and Formulation
- Open Binary Software
- Part III: Applications of HPSS to MIR Tasks
- Audio Chord Estimation
- Melody Extraction
- Audio Genre Classification
- Conclusions

Introduction

- Focus of the second half of this tutorial is to clarify
- What source separation has been used for MIR?
- How does it improve performance of MIR tasks?
- Examples:
- Multi pitch estimation

Task itself is tightly coupled with source separation.

- Audio genre classification How source separation is useful?
Not straightforward.

Part I: Brief Introduction of State-of-the-arts

Singer Identification

- Task: Identify a singer from music audio with accompaniment

■ Typical approach

Fig. 1 [Fujihara2005]
Feature extraction

Reliable Frame Selection [Fujihara2005]

- Only reliable frame is used for classification

Fig. 1 [Fujihara2005]
Classifier

Evaluation by Confusing Matrix

- Male/female confusion is decreased by accompaniment reduction.
- Combination of reduction and selection much improves performance.

Fig. 3 [Fujihara2005]

reduction only

Vocal Separation Based on Melody Transcriber

- Melody-F0-based Vocal Separation
[Mesaros2007]
- Estimate melody-F0 by melody transcription system [Ryynanen2006].
- Generate harmonic overtones at multiple of estimated F0.
- Estimate amplitudes and phases of overtones based on cross correlation between original signal and complex exponentials.
- They evaluate the effect of separation in singer identification performance using by different classifiers.

Instrument Identification

- Task: Determine instruments present in music piece
- Typical approach
 is not perfect. How to reduce errors?

Feature Weighting [Kitahara2007]

- Feature vectors of each instrument are collected from polyphonic music for training.
- Robustness of each feature is evaluated by ratio of intra-class variance to inter-class variance: Applying Linear discriminant analysis (LDA) for feature weighting.

Effectiveness of Feature Weighting

Fig. 6 [Kitahara2007]
Feature weighting by LDA improves recognition rate.

Audio Tempo Estimation

- Task: Extract tempo from musical audio
- Typical approach:

Applying Harmonic+Noise Model

- Harmonic+Noise model is applied before calculating detection function [Alonso2007]

Influence of S+N Model

Separation based on $\mathrm{H}+\mathrm{N}$ model shows better results.

Applying PLCA

- PLCA (Probabilistic Latent Component Analysis), NMF-like method is applied.
It increases much candidates of tempo.
- They report its effectiveness.

Part II: Harmonic/Percussive Sound Separation

Motivation and Goal of HPSS

- Motivation: Music consists of two different components

- Goal: Separation of a monaural audio signal into harmonic and percussive components
- Target: MIR-related tasks

■ multi-pitch analysis, chord recognition... H-related
■ beat tracking, rhythm recognition...
P-related

Related Works to H/P Separation

- Source separation into multiple components followed by classification
- ICA and classification [Uhle2003]

■ NMF and classification [Helen2005]
■ Steady + Transient model

- Adaptive phase vocoder
- Subspace projection
- Matching persuit
...etc
Good review is provided in [Daudet2005]
- Baysian NMF [Dikmen2009]

Point: Anisotropy of Spectrogram

H/P Separation Problem

harmonic component

percussive component

- Problem:

Find $H_{t, \omega}$ and $P_{t, \omega}$ from $W_{t, \omega}$ on power spectrogram

- Requirements:

1) $H_{t, \omega}$: horizontally smooth
2) $P_{t, \omega}:$ vertically smooth
3) $H_{t, \omega}$ and $P_{t, \omega}$: non-negative
4) $H_{t, \omega}+P_{t, \omega}$: should be close to $W_{t, \omega}$

Formulation of H/P Separation (1/2)

- Formulation as an Optimization Problem: - Objective function to minimize

$$
J(\boldsymbol{H}, \boldsymbol{P})=\frac{D(\boldsymbol{W}, \boldsymbol{H}+\boldsymbol{P})}{\text { Closeness cost }}+\frac{C_{H}(\boldsymbol{H})}{\text { Smoothness cost }}+\frac{C_{P}(\boldsymbol{P})}{}
$$

- Under constraints:

$$
\begin{aligned}
& \boxtimes H_{t, \omega} \geqq 0 \\
& \boxtimes P_{t, \omega} \geqq 0
\end{aligned}
$$

In MAP estimation context, they are corresponding likelihood term and prior term, respectively.

Formulation of H/P Separation (2/2)

- Closeness cost function: I-divergence

$$
D(\boldsymbol{W}, \boldsymbol{H}+\boldsymbol{P})=\sum_{\omega, \tau}\left\{W_{\omega, \tau} \log \frac{W_{\omega, \tau}}{H_{\omega, \tau}+P_{\omega, \tau}}-W_{\omega, \tau}+H_{\omega, \tau}+P_{\omega, \tau}\right\}
$$

- Smoothness cost function: Square of difference

$$
\begin{aligned}
& C_{H}(\boldsymbol{H})=\sum_{\omega, \tau} \frac{1}{2 \sigma_{H}^{2}}\left(H_{\omega, \tau-1}^{\gamma}-H_{\omega, \tau}^{\gamma}\right)^{\gamma=0.5} \\
& C_{P}(\boldsymbol{H})=\sum_{\omega, \tau} \frac{1}{2 \sigma_{P}^{2}}\left(P_{\omega-1, \tau}^{\gamma}-P_{\omega, \tau}\right)^{2} \\
& \text { for scale invariance } \\
& \text { Weight to control two smoothness }
\end{aligned}
$$

- A variance modeling-based separation using
- Poisson observation distribution
- Gaussian continuity priors

Update Rules

■ Update alternatively two kinds of variables:

- H and P:

$$
\begin{aligned}
& H_{\omega, \tau} \leftarrow\left(\frac{b_{H \omega, \tau}+\sqrt{b_{H \omega, \tau}^{2}+4 a_{H \omega, \tau} c_{H \omega, \tau}}}{2 a_{H \omega, \tau}}\right)^{2} \\
& P_{\omega, \tau} \leftarrow\left(\frac{b_{P \omega, \tau}+\sqrt{b_{P \omega, \tau}^{2}+4 a_{P \omega, \tau} c_{P \omega, \tau}}}{2 a_{P \omega, \tau}}\right)^{2}
\end{aligned}
$$

- Auxiliary variables:

$$
\begin{aligned}
m_{P \omega, \tau} & =\frac{P_{\omega, \tau}}{H_{\omega, \tau}+P_{\omega, \tau}} & m_{H \omega, \tau} & =\frac{H_{\omega, \tau}}{H_{\omega, \tau}+P_{\omega, \tau}} \\
a_{P \omega, \tau} & =\frac{2}{\sigma_{P}^{2}}+2 & a_{H \omega, \tau} & =\frac{2}{\sigma_{H}^{2}}+2 \\
b_{P \omega, \tau} & =\frac{\left(\sqrt{P_{\omega-1, \tau}}+\sqrt{P_{\omega+1, \tau}}\right)}{\sigma_{P}^{2}} & b_{H \omega, \tau} & =\frac{\left(\sqrt{H_{\omega, \tau-1}}+\sqrt{H_{\omega, \tau+1}}\right)}{\sigma_{H}^{2}} \\
c_{P \omega, \tau} & =2 m_{P \omega, \tau} W_{\omega, \tau} & c_{H \omega, \tau} & =2 m_{H \omega, \tau} W_{\omega, \tau}
\end{aligned}
$$

Separated Examples

Music piece	original	H	P
RWC-MDB-P-7 "PROLOGUE"	4	4	4
RWC-MDB-P-12 "KAGE-ROU"	4		4
RWC-MDB-P-18 "True Heart"	4	4	4
RWC-MDB-P-25 "tell me"	4	4	4
RWC-MDB-J-16 "Jive "	4		

Real-Time Implementation

- Sliding Block Analysis

Open Software: Real-time H/P equalizer

Available at http://www.hil.t.u-tokyo.ac.jp/software/HPSS/

- Control H/P balance of audio signal in real time
- Simple instructions:

1) Click "Load WAV" button and choose a WAVformatted audio file.
2) Click "Start" button, and then, audio starts.
3) Slide H/P balance bar as you like and listen how the sound changes.

Part III: Applications of HPSS to MIR Tasks

III-1: Audio Chord Detection

Audio Chord Detection

- Task: Estimate chord sequence and its segmentation from music audio

Typical Approach: Chroma Feature + HMM

Feature-refined System [Ueda2009]

- Feature: chroma [Fujishima1999]
- Chroma observation probability $p\left(x_{t} \mid c_{t}\right)$
- Transition: chord progression - Bigram probability $p\left(c_{t} \mid c_{t-1}\right)$
- Maximum a Posteriori Chord Estimation [Sheh2003]
- Viterbi algorithm for ...

Initial prob. ${ }^{t}{ }^{1}$ emission transition

Suppressing Percussive Sounds

- Percussive sounds are harmful in chord detection

Emphasize harmonic components
by HPSS

Tuning Compensation

- Tuning difference among songs
- Neglecting this may blur chroma features
- Choose best tuning from multiple candidates
- Find maximum chroma energy (sum of all bins of chroma)
- Assume: tuning does not change within a song

Delta Chroma Features

- Improve chord boundary accuracy
- by features representing chord boundaries
- Chord tones largely changes at chord boundary
- Delta chroma: derivative of chroma features
- Cf. Delta cepstrum (MFCC): Effective features of speech recognition
- Calculated by regression analysis of δ sample points [Sagayama\&Itakura1979]

$i=1, \cdots, 12$

\log power of pitch A

Multiple States per Chord

- Chroma changes from "onset" to "release" - capture the change by having multiple states per chord
- tradeoff between data size and the number of states

Experimental Evaluation

- Test Data
- 180 songs (12 albums) of The Beatles (chord reference annotation provided by C. Harte)
- 11.025 kHz sampling, 16bit, 1ch, WAV file
- Frequency range: $55.0 \mathrm{~Hz}-1661.2 \mathrm{~Hz}$ (5 octaves)
- Labels
- $12 \times$ major $/$ minor $=24$ chords +N (no chord)
- Evaluation
- Album filtered 3-fold cross validation - 8 albums for training, 4 albums for testing
- Frame Recognition Rate
= (\#correct frames) / (\#total frames)
- Sampled every 100 ms

Chord Detection Results

HE : harmonic sound emphasized
TC: tuning compensation
FT: FT chroma (diagonal covariance)
DC: Delta chroma

HPSS improves chord detection performance

Melody Extraction

- Task: Identify a melody pitch contour from polyphonic musical audio
- Typical approach:

- Singing voice enhancement will be useful pre-processing.

Singing Voice in Spectrogram

A. Vertical component: Percussion
B. Horizontal component: Harmonic instrument (piano, guiter, etc..)
C. Fluctuated component: Singing voice

Is voice harmonic or percussive?

Depends on spectrogram resolution (frame-length)

- On short-frame STFT domain, voice appears as "H" (time direction clustered).
- On long-frame STFT domain, voice appears as "P" (frequency direction clustered).

"Harmonic"

"Percussive"

HPSS results with different frame length

Two-stage HPSS [Tachibana2010]

Spectrogram Example

Original signal (from LabROSA dataset)

Spectrogram Example

Separation Examples

tite	original	Extracted Vocal	$\begin{gathered} \text { Vocal } \\ \text { Cancelled* } \end{gathered}$	Genre
"tell me"	O	O	O	F, R\&B
"Weekend"	O	Q	O	F, Euro beat
"Dance Together"	0	0	O	M, Jazz
"1999"	O	0	0	M, Metal rock
"Seven little crows"	0	O	O	F, Nursery rhyme
"La donna è mobile" from Verdi's opera "Rigoletto"	O	0	O	M, Classical

Melody Tracking by DP [Tachibana2010]

■ Estimating hidden states by dynamic programming

Example of Melody Tracking

- train06.wav, distributed by LabROSA database

Results in MIREX 2009

- Data: 379 songs, mixed in $+5 \mathrm{~dB}, 0 \mathrm{~dB}$, and -5 dB .

Part III: Applications of HPSS to MIR Tasks

III-3: Audio Genre Classification

Robustness to large singer-to-accompaniment ratio is greatly improved.

Audio Genre Classification

- Task: estimate genre from music audio - Blues, classical, jazz, rock, ...
- Typical approach

■ Example of features [Tzanetakis2001]

- Timbral information (MFCC, etc.)
- Melodic information
- Statistics about periodicities: Beat histogram

New Features I: Percussive Patterns

Musical Audio Signal
Harmonics / Percussions Separation
Percussion-Emphasized
Spectrogram

[Tsunoo2009]

Motivation for Bar-long Percussive Patterns

■ Bar-long percussive patterns (temporal information) are frequently characteristic of a particular genre

- Difficulties

1) Mixture of harmonic and percussive components
2) Unknown bar-lines
3) Tempo fluctuation
4) Unknown multiple patterns
$A A A A B A A A C C C C$

Rhythmic Structure Analysis

by One-pass DP algorithm

- Assume that correct bar-line unit patterns are given.
- Problem: tempo fluctuation and unknown segmentation
- Analogous to continuous speech recognition problem
- One-pass dynamic programming algorithm can be used to segment

Dynamic Pattern Clustering [Tsunoo2009]

- Actually, unit patterns also should be estimated.
- Chicken-and-egg problem
- Analogous to unsupervised learning problem
- Iterative algorithm based on k-means clustering
- Segment spectrogram using one-pass DP algorithm
- Update unit patterns by averaging segments
- Convergence is guaranteed mathematically

nout
SCáa Aug. 9, 2010
ISMIR2010 Tutorial 1

Example of "Rhythm Map"

Necessity of HPSS in Rhythm Map

Rhythm patterns and structures are not extracted without HPSS!

- Apply to a collection of music pieces
- Alignment calculation by one-pass DP algorithm - Use same set of templates
- Updating templates by k-means clustering - Use whole music collection of a particular genre

Features and Classifiers

- Feature Vectors:

Genre-pattern Occurrence Histogram (normalized)

- Classifier: Support Vector Machine (SVM)

Extracted Percussive Patterns

- Pattern set
- Divided the datasets into 2 parts and obtained 2 sets of 10 templates for each genre
- Example of learned templates

10 templates learned from "blues"

Experimental Evaluation

- Dataset
(standard)
(rhythm-intensive)
- GTZAN dataset
- 22050 Hz sampling, 1ch
- 30 seconds clips
- 10 genres
- \{blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, rock\}
- 100 songs per genre: total \circ 1000 songs
- Evaluation
- 10-fold cross-validation
- Classifier: linear SVM (toolkit "Weka" used)

New Features II: Bass-line Patterns

Bass-line Pattern
Feature Extraction
Feature Vector
Supervised learning

Genre Classification Accuracy

Classification accuracy with only bass-line features

Classification accuracy merged with timbre features

Features	GTZAN dataset	Ballroom dataset
Baseline (random classifier)	10.0%	10.0%
Only bass-line (400 dim.)	42.0%	44.8%
Existing (timbre, 68 dim.)	72.4%	72.4%
Merged (468 dim.)	74.4%	76.0%

Another Application of HPSS [Rump2010]

- Autoregressive MFCC Model applied to Genre Classification
- HPSS increases the number of channels mono -> three (original, harmonic, percussive) and improves performance

Examples of Extracted Bass-line Patterns

Conclusions

- Source separation techniques used to MIR
- F0-based harmonic separation
- Non-negative matrix factorization or PLCA
- Sinusoid + Noise model
- Harmonic/percussive sound separation
- Source separation is useful
- To enhance specific components
- To increase the number of channels and the dimension of feature vectors
- To generate new features

Future Works

- Application of source separation to other MIR tasks
- Cover song identification, audio music similarity,...
- Improvement of separation performance itself by exploiting musicological knowledge
- Using spatial (especially stereo) information - Current works are limited to monaural separation
- Feature weighting technique for overcoming errors due to imperfect source separation

Reference Book Chapter

- Advances in Music Information Retrieval, ser. Studies in Computational Intelligence, Z. W. Ras and A.
Wieczorkowska, Eds. Springer, 274
- N. Ono, K. Miyamoto, H. Kameoka, J. Le Roux, Y. Uchiyama, E. Tsunoo, T. Nishimoto and S. Sagayama, "Harmonic and Percussive Sound Separation and its Application to MIR-related Tasks," pp.213-236

Available Separation Softwares

- Harmonic Percussive Sound Separation (HPSS) - http://www.hil.t.u-tokyo.ac.jp/software/HPSS/
- ICA Central: Early software restricted to mixtures of two sources
- http://www.tsi.enst.fr/icacentral/algos.html
- SiSEC Reference Software: Linear modeling-based software for panned or recorded mixtures
- http://sisec2008.wiki.irisa.fr/tiki-index.php?page=Underdetermined+speech+and+music+mixtures
- QUAERO Source Separation Toolkit: Modular variancemodeling based software implementing a range of structures: GMM, NMF, source-filter model, harmonicity, diffuse mixing, etc
- To be released Fall 2010: watch the music-ir list for an announcement!

Advertisement: LVA/ICA 2010

- LVA/ICA 2010 is held will be held in St. Malo, France on September 27-30, 2010.
- More than 20 papers on music and audio source separation will be presented.

References

- Singer/Instrument Identification
- H. Fujihara, T. Kitahara, M. Goto, K. Komatani, T. Ogata and H. Okuno, "Singer Identification Based on Accompaniment Sound Reduction and Reliable Frame Selection, " Proc. ISMIR, 2005.
- M. Goto, "A real-time music-scene description system: predominant-F0 estimation," Speech Communication, vol. 43, no. 4, pp. 311-329, 2004.
- A. Mesaros, T. Virtanen and A. Klapuri, "Singer identification in polyphonic music using vocal separation and pattern recognition methods," Proc. ISMIR, pp. 375-378, 2007.
- M. Ryynanen and A. Klapuri, "Transcription of the Singing Melody in Polyphonic Music", Proc. ISMIR, 2006.
- T. Kitahara, M. Goto, K. Komatani, T. Ogata and H. G. Okuno, "Instrument identification in polyphonic music: feature weighting to minimize influence of sound overlaps," EURASIP Journal on Applied Signal Processing, vol. 2007, 2007, article ID 51979.

References

- Audio Tempo Estimation
- M. Alonso, G. Richard and B. David, "Accurate tempo estimation based on harmonic + noise decomposition," EURASIP Journal on Advances in Signal ProcessingVolume 2007 (2007), Article ID 82795
- P. Chordia and A. Rae, "Using Source Separation to Improve Tempo Detection," Proc. ISMIR, pp. 183-188, 2009.
- Related Works to H/P Separation
- C. Uhle, C. Dittmar, and T. Sporer, "Extraction of drum tracks from polyphonic music using independent subspace analysis," Proc. ICA, pp. 843-847, 2003.
- M. Helen and T. Virtanen, "Separation of drums from polyphonic music using non-negative matrix factorization and support vector machine," Proc. EUSIPCO, Sep. 2005.
- L. Daudet, "A Review on Techniques for the Extraction of Transients in Musical Signals," Proc. CMMR, pp. 219-232, 2005.
- O. Dikmen, A. T. Cemgil, "Unsupervised Single-channel Source Separation Using Basian NMF," Proc. WASPAA, pp. 93-96, 2009.

References

- Harmonic/Percussive Sound Separation
- K. Miyamoto, H. Kameoka, N. Ono and S. Sagayama, "Separation of Harmonic and Non-Harmonic Sounds Based on Anisotropy in Spectrogram, Proc. ASJ, pp.903-904, 2008. (in Japanese)
- N. Ono, K. Miyamoto, J. Le Roux, H. Kameoka and S. Sagayama, "Separation of a Monaural Audio Signal into Harmonic/Percussive Components by Complementary Diffusion on Spectrogram," Proc. EUSIPCO, 2008.
- N. Ono, K. Miyamoto, J. Le Roux, H. Kameoka and S. Sagayama, "A Real-time Equalizer of Harmonic and Percussive Components in Music Signals," Proc. of ISMIR, pp.139-144, 2008.
- N. Ono, K. Miyamoto, H. Kameoka, J. Le Roux, Y. Uchiyama, E. Tsunoo, T. Nishimoto and S. Sagayama, "Harmonic and Percussive Sound Separation and its Application to MIR-related Tasks," Advances in Music Information Retrieval, ser. Studies in Computational Intelligence, Z. W. Ras and A. Wieczorkowska, Eds. Springer, 274, pp.213-236, Feb., 2010.

References

- Applications of HPSS to MIR Tasks
- Y. Ueda, Y. Uchiyama, T. Nishimoto, N. Ono and S. Sagayama, "HMM-Based Approach for Automatic Chord Detection Using Refined Acoustic Features," Proc. ICASSP, pp.5518-5521, 2010.
- J. Reed, Y. Ueda, S. M. Siniscalchi, Y. Uchiyama, S. Sagayama, C. -H. Lee, "Minimum Classification Error Training to Improve Isolated Chord Recognition," Proc. ISMIR, pp.609-614, 2009.
- H. Tachibana, T. Ono, N. Ono and S. Sagayama, "Melody Line Estimation in Homophonic Music Audio Signals Based on Temporal-Variability of Melodic Source," Proc. ICASSP, pp.425-428, 2010.
- H. Rump, S. Miyabe, E. Tsunoo, N. Ono and S. Sagayama, "On the Feature Extraction of Timbral Dynamics," Proc. ISMIR, 2010.

References

- Applications of HPSS in MIR Tasks
- E. Tsunoo, N. Ono and S. Sagayama, " Rhythm Map: Extraction of Unit Rhythmic Patterns and Analysis of Rhythmic Structure from Music Acoustic Signals," Proc. ICASSP, pp.185-188, 2009.
- E. Tsunoo, G. Tzanetakis, N. Ono and S. Sagayama, "Audio Genre Classification Using Percussive Pattern Clustering Combined with Timbral Features," Proc. ICME, pp.382-385, 2009.
- E. Tsunoo, N. Ono and S. Sagayama, "Musical Bass-Line Pattern Clustering and Its Application to Audio Genre Classification," Proc. ISMIR, pp.219-224, 2009.
- E. Tsunoo, T. Akase, N. Ono and S. Sagayama, "Music Mood Classification by Rhythm and Bass-line Unit Pattern Analysis," Proc. ICASSP, pp.265-268, 2010.

